Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Problems.Knapsack/3.3/Evaluators/KnapsackEvaluator.cs @ 15702

Last change on this file since 15702 was 15584, checked in by swagner, 7 years ago

#2640: Updated year of copyrights in license headers on stable

File size: 6.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.BinaryVectorEncoding;
27using HeuristicLab.Operators;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Problems.Knapsack {
32  /// <summary>
33  /// A base class for operators which evaluate Knapsack solutions given in BinaryVector encoding.
34  /// </summary>
35  [Item("KnapsackEvaluator", "Evaluates solutions for the Knapsack problem.")]
36  [StorableClass]
37  public class KnapsackEvaluator : InstrumentedOperator, IKnapsackEvaluator {
38    public ILookupParameter<DoubleValue> QualityParameter {
39      get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
40    }
41
42    public ILookupParameter<DoubleValue> SumWeightsParameter {
43      get { return (ILookupParameter<DoubleValue>)Parameters["SumWeights"]; }
44    }
45
46    public ILookupParameter<DoubleValue> SumValuesParameter {
47      get { return (ILookupParameter<DoubleValue>)Parameters["SumValues"]; }
48    }
49
50    public ILookupParameter<DoubleValue> AppliedPenaltyParameter {
51      get { return (ILookupParameter<DoubleValue>)Parameters["AppliedPenalty"]; }
52    }
53
54    public ILookupParameter<BinaryVector> BinaryVectorParameter {
55      get { return (ILookupParameter<BinaryVector>)Parameters["BinaryVector"]; }
56    }
57
58    public ILookupParameter<IntValue> KnapsackCapacityParameter {
59      get { return (ILookupParameter<IntValue>)Parameters["KnapsackCapacity"]; }
60    }
61    public ILookupParameter<DoubleValue> PenaltyParameter {
62      get { return (ILookupParameter<DoubleValue>)Parameters["Penalty"]; }
63    }
64    public ILookupParameter<IntArray> WeightsParameter {
65      get { return (ILookupParameter<IntArray>)Parameters["Weights"]; }
66    }
67    public ILookupParameter<IntArray> ValuesParameter {
68      get { return (ILookupParameter<IntArray>)Parameters["Values"]; }
69    }
70
71    [StorableConstructor]
72    protected KnapsackEvaluator(bool deserializing) : base(deserializing) { }
73    protected KnapsackEvaluator(KnapsackEvaluator original, Cloner cloner) : base(original, cloner) { }
74    public KnapsackEvaluator()
75      : base() {
76      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The evaluated quality of the OneMax solution."));
77      Parameters.Add(new LookupParameter<DoubleValue>("SumWeights", "The evaluated quality of the OneMax solution."));
78      Parameters.Add(new LookupParameter<DoubleValue>("SumValues", "The evaluated quality of the OneMax solution."));
79      Parameters.Add(new LookupParameter<DoubleValue>("AppliedPenalty", "The evaluated quality of the OneMax solution."));
80      Parameters.Add(new LookupParameter<BinaryVector>("BinaryVector", "The OneMax solution given in path representation which should be evaluated."));
81      Parameters.Add(new LookupParameter<IntValue>("KnapsackCapacity", "Capacity of the Knapsack."));
82      Parameters.Add(new LookupParameter<IntArray>("Weights", "The weights of the items."));
83      Parameters.Add(new LookupParameter<IntArray>("Values", "The values of the items."));
84      Parameters.Add(new LookupParameter<DoubleValue>("Penalty", "The penalty value for each unit of overweight."));
85    }
86
87    public override IDeepCloneable Clone(Cloner cloner) {
88      return new KnapsackEvaluator(this, cloner);
89    }
90
91    public struct KnapsackEvaluation {
92      public DoubleValue Quality;
93      public DoubleValue SumWeights;
94      public DoubleValue SumValues;
95      public DoubleValue AppliedPenalty;
96    }
97
98    public static KnapsackEvaluation Apply(BinaryVector v, IntValue capacity, DoubleValue penalty, IntArray weights, IntArray values) {
99      if (weights.Length != values.Length)
100        throw new InvalidOperationException("The weights and values parameters of the Knapsack problem have different sizes");
101
102      KnapsackEvaluation result = new KnapsackEvaluation();
103
104      double quality = 0;
105
106      int weight = 0;
107      int value = 0;
108      double appliedPenalty = 0;
109
110      for (int i = 0; i < v.Length; i++) {
111        if (v[i]) {
112          weight += weights[i];
113          value += values[i];
114        }
115      }
116
117      if (weight > capacity.Value) {
118        appliedPenalty = penalty.Value * (weight - capacity.Value);
119      }
120
121      quality = value - appliedPenalty;
122
123      result.AppliedPenalty = new DoubleValue(appliedPenalty);
124      result.SumWeights = new DoubleValue(weight);
125      result.SumValues = new DoubleValue(value);
126      result.Quality = new DoubleValue(quality);
127
128      return result;
129    }
130
131    public sealed override IOperation InstrumentedApply() {
132      BinaryVector v = BinaryVectorParameter.ActualValue;
133
134      KnapsackEvaluation evaluation = Apply(BinaryVectorParameter.ActualValue,
135        KnapsackCapacityParameter.ActualValue,
136        PenaltyParameter.ActualValue,
137        WeightsParameter.ActualValue,
138        ValuesParameter.ActualValue);
139
140      QualityParameter.ActualValue = evaluation.Quality;
141      SumWeightsParameter.ActualValue = evaluation.SumWeights;
142      SumValuesParameter.ActualValue = evaluation.SumValues;
143      AppliedPenaltyParameter.ActualValue = evaluation.AppliedPenalty;
144
145      return base.InstrumentedApply();
146    }
147  }
148}
Note: See TracBrowser for help on using the repository browser.