1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Random;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
28 | public class FriedmanOne : ArtificialRegressionDataDescriptor {
|
---|
29 |
|
---|
30 | public override string Name { get { return "Friedman - I"; } }
|
---|
31 | public override string Description {
|
---|
32 | get {
|
---|
33 | return "Paper: Multivariate Adaptive Regression Splines" + Environment.NewLine
|
---|
34 | + "Authors: Jerome H. Friedman";
|
---|
35 | }
|
---|
36 | }
|
---|
37 | protected override string TargetVariable { get { return "Y"; } }
|
---|
38 | protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
|
---|
39 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
|
---|
40 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
41 | protected override int TrainingPartitionEnd { get { return 5000; } }
|
---|
42 | protected override int TestPartitionStart { get { return 5000; } }
|
---|
43 | protected override int TestPartitionEnd { get { return 10000; } }
|
---|
44 |
|
---|
45 | protected static FastRandom rand = new FastRandom();
|
---|
46 |
|
---|
47 | protected override List<List<double>> GenerateValues() {
|
---|
48 | List<List<double>> data = new List<List<double>>();
|
---|
49 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
50 | data.Add(ValueGenerator.GenerateUniformDistributedValues(10000, 0, 1).ToList());
|
---|
51 | }
|
---|
52 |
|
---|
53 | double x1, x2, x3, x4, x5;
|
---|
54 | double f;
|
---|
55 | List<double> results = new List<double>();
|
---|
56 | for (int i = 0; i < data[0].Count; i++) {
|
---|
57 | x1 = data[0][i];
|
---|
58 | x2 = data[1][i];
|
---|
59 | x3 = data[2][i];
|
---|
60 | x4 = data[3][i];
|
---|
61 | x5 = data[4][i];
|
---|
62 |
|
---|
63 | f = 0.1 * Math.Exp(4 * x1) + 4 / (1 + Math.Exp(-20 * (x2 - 0.5))) + 3 * x3 + 2 * x4 + x5;
|
---|
64 |
|
---|
65 | results.Add(f + NormalDistributedRandom.NextDouble(rand, 0, 1));
|
---|
66 | }
|
---|
67 | data.Add(results);
|
---|
68 |
|
---|
69 | return data;
|
---|
70 | }
|
---|
71 | }
|
---|
72 | }
|
---|