[7849] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[11170] | 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7849] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 27 | public class KornsFunctionNine : ArtificialRegressionDataDescriptor {
|
---|
| 28 |
|
---|
[8225] | 29 | public override string Name { get { return "Korns 9 y = ((sqrt(X0) / log(X1)) * (exp(X2) / X3²)"; } }
|
---|
[7849] | 30 | public override string Description {
|
---|
| 31 | get {
|
---|
| 32 | return "Paper: Accuracy in Symbolic Regression" + Environment.NewLine
|
---|
| 33 | + "Authors: Michael F. Korns" + Environment.NewLine
|
---|
[8225] | 34 | + "Function: y = (sqrt(X0) / log(X1)) * (exp(X2) / X3²)" + Environment.NewLine
|
---|
| 35 | + "Binary Operators: +, -, *, % (protected division)" + Environment.NewLine
|
---|
| 36 | + "Unary Operators: sqrt, square, cube, cos, sin, tan, tanh, ln(|x|) (protected log), exp" + Environment.NewLine
|
---|
| 37 | + "Constants: random finit 64-bit IEEE double" + Environment.NewLine
|
---|
[7849] | 38 | + "\"Our testing regimen uses only statistical best practices out-of-sample testing techniques. "
|
---|
| 39 | + "We test each of the test cases on matrices of 10000 rows by 1 to 5 columns with no noise. "
|
---|
| 40 | + "For each test a training matrix is filled with random numbers between -50 and +50. The test case "
|
---|
| 41 | + "target expressions are limited to one basis function whose maximum depth is three grammar nodes.\"" + Environment.NewLine + Environment.NewLine
|
---|
[8900] | 42 | + "Note: Because of the square root and the logarithm only non-negatic values are created for their input variables!" + Environment.NewLine
|
---|
| 43 | + "Because of the exponential function only only non-positive values are created for its input variable!";
|
---|
[7849] | 44 | }
|
---|
| 45 | }
|
---|
| 46 | protected override string TargetVariable { get { return "Y"; } }
|
---|
[8825] | 47 | protected override string[] VariableNames { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } }
|
---|
[7849] | 48 | protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } }
|
---|
| 49 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
[8225] | 50 | protected override int TrainingPartitionEnd { get { return 10000; } }
|
---|
| 51 | protected override int TestPartitionStart { get { return 10000; } }
|
---|
| 52 | protected override int TestPartitionEnd { get { return 20000; } }
|
---|
[7849] | 53 |
|
---|
| 54 | protected override List<List<double>> GenerateValues() {
|
---|
| 55 | List<List<double>> data = new List<List<double>>();
|
---|
[8245] | 56 | data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper)
|
---|
| 57 | data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper)
|
---|
[9007] | 58 | data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList());
|
---|
[8900] | 59 | data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList());
|
---|
| 60 | data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList());
|
---|
[7849] | 61 |
|
---|
| 62 | double x0, x1, x2, x3;
|
---|
| 63 | List<double> results = new List<double>();
|
---|
| 64 | for (int i = 0; i < data[0].Count; i++) {
|
---|
| 65 | x0 = data[0][i];
|
---|
| 66 | x1 = data[1][i];
|
---|
| 67 | x2 = data[2][i];
|
---|
| 68 | x3 = data[3][i];
|
---|
| 69 | results.Add(((Math.Sqrt(x0) / Math.Log(x1)) * (Math.Exp(x2) / Math.Pow(x3, 2))));
|
---|
| 70 | }
|
---|
| 71 | data.Add(results);
|
---|
| 72 |
|
---|
| 73 | return data;
|
---|
| 74 | }
|
---|
| 75 | }
|
---|
| 76 | }
|
---|