[7860] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7860] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[12740] | 25 | using HeuristicLab.Common;
|
---|
[14305] | 26 | using HeuristicLab.Random;
|
---|
[7860] | 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
[8238] | 29 | public class KeijzerFunctionTen : ArtificialRegressionDataDescriptor {
|
---|
[7860] | 30 |
|
---|
[8238] | 31 | public override string Name { get { return "Keijzer 10 f(x, y) = x ^ y"; } }
|
---|
[7860] | 32 | public override string Description {
|
---|
| 33 | get {
|
---|
| 34 | return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
|
---|
| 35 | + "Authors: Maarten Keijzer" + Environment.NewLine
|
---|
| 36 | + "Function: f(x, y) = x ^ y" + Environment.NewLine
|
---|
| 37 | + "range(train): 100 Train cases x,y = rnd(0, 1)" + Environment.NewLine
|
---|
| 38 | + "range(test): x,y = [0:0.01:1]" + Environment.NewLine
|
---|
| 39 | + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
|
---|
| 40 | }
|
---|
| 41 | }
|
---|
| 42 | protected override string TargetVariable { get { return "F"; } }
|
---|
[8825] | 43 | protected override string[] VariableNames { get { return new string[] { "X", "Y", "F" }; } }
|
---|
[7860] | 44 | protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
|
---|
| 45 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 46 | protected override int TrainingPartitionEnd { get { return 100; } }
|
---|
| 47 | protected override int TestPartitionStart { get { return 100; } }
|
---|
[9007] | 48 | protected override int TestPartitionEnd { get { return 100 + (101 * 101); } }
|
---|
[14305] | 49 | public int Seed { get; private set; }
|
---|
[7860] | 50 |
|
---|
[14305] | 51 | public KeijzerFunctionTen() : this((int)System.DateTime.Now.Ticks) {
|
---|
| 52 | }
|
---|
| 53 | public KeijzerFunctionTen(int seed) : base() {
|
---|
| 54 | Seed = seed;
|
---|
| 55 | }
|
---|
[7860] | 56 | protected override List<List<double>> GenerateValues() {
|
---|
| 57 | List<List<double>> data = new List<List<double>>();
|
---|
| 58 |
|
---|
[12740] | 59 | List<double> oneVariableTestData = SequenceGenerator.GenerateSteps(0, 1, 0.01m).Select(v => (double)v).ToList();
|
---|
[7860] | 60 | List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
|
---|
| 61 |
|
---|
| 62 | var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
|
---|
[14305] | 63 | var rand = new MersenneTwister((uint)Seed);
|
---|
[7860] | 64 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
[14305] | 65 | data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), 100, 0, 1).ToList());
|
---|
[7860] | 66 | data[i].AddRange(combinations[i]);
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | double x, y;
|
---|
| 70 | List<double> results = new List<double>();
|
---|
| 71 | for (int i = 0; i < data[0].Count; i++) {
|
---|
| 72 | x = data[0][i];
|
---|
| 73 | y = data[1][i];
|
---|
| 74 | results.Add(Math.Pow(x, y));
|
---|
| 75 | }
|
---|
| 76 | data.Add(results);
|
---|
| 77 |
|
---|
| 78 | return data;
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 | }
|
---|