[7860] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7860] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
[8238] | 27 | public class KeijzerFunctionTen : ArtificialRegressionDataDescriptor {
|
---|
[7860] | 28 |
|
---|
[8238] | 29 | public override string Name { get { return "Keijzer 10 f(x, y) = x ^ y"; } }
|
---|
[7860] | 30 | public override string Description {
|
---|
| 31 | get {
|
---|
| 32 | return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
|
---|
| 33 | + "Authors: Maarten Keijzer" + Environment.NewLine
|
---|
| 34 | + "Function: f(x, y) = x ^ y" + Environment.NewLine
|
---|
| 35 | + "range(train): 100 Train cases x,y = rnd(0, 1)" + Environment.NewLine
|
---|
| 36 | + "range(test): x,y = [0:0.01:1]" + Environment.NewLine
|
---|
| 37 | + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
|
---|
| 38 | }
|
---|
| 39 | }
|
---|
| 40 | protected override string TargetVariable { get { return "F"; } }
|
---|
[8825] | 41 | protected override string[] VariableNames { get { return new string[] { "X", "Y", "F" }; } }
|
---|
[7860] | 42 | protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
|
---|
| 43 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 44 | protected override int TrainingPartitionEnd { get { return 100; } }
|
---|
| 45 | protected override int TestPartitionStart { get { return 100; } }
|
---|
[9007] | 46 | protected override int TestPartitionEnd { get { return 100 + (101 * 101); } }
|
---|
[7860] | 47 |
|
---|
| 48 | protected override List<List<double>> GenerateValues() {
|
---|
| 49 | List<List<double>> data = new List<List<double>>();
|
---|
| 50 |
|
---|
[11868] | 51 | List<double> oneVariableTestData = ValueGenerator.GenerateSteps(0, 1, 0.01m).Select(v => (double)v).ToList();
|
---|
[7860] | 52 | List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
|
---|
| 53 |
|
---|
| 54 | var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
|
---|
| 55 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
| 56 | data.Add(ValueGenerator.GenerateUniformDistributedValues(100, 0, 1).ToList());
|
---|
| 57 | data[i].AddRange(combinations[i]);
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | double x, y;
|
---|
| 61 | List<double> results = new List<double>();
|
---|
| 62 | for (int i = 0; i < data[0].Count; i++) {
|
---|
| 63 | x = data[0][i];
|
---|
| 64 | y = data[1][i];
|
---|
| 65 | results.Add(Math.Pow(x, y));
|
---|
| 66 | }
|
---|
| 67 | data.Add(results);
|
---|
| 68 |
|
---|
| 69 | return data;
|
---|
| 70 | }
|
---|
| 71 | }
|
---|
| 72 | }
|
---|