1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
26 | using HeuristicLab.Random;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
29 | public class FeatureSelectionInstanceProvider : ArtificialRegressionInstanceProvider {
|
---|
30 | public override string Name {
|
---|
31 | get { return "Feature Selection Problems"; }
|
---|
32 | }
|
---|
33 | public override string Description {
|
---|
34 | get { return "A set of artificial feature selection benchmark problems"; }
|
---|
35 | }
|
---|
36 | public override Uri WebLink {
|
---|
37 | get { return new Uri("http://dev.heuristiclab.com"); }
|
---|
38 | }
|
---|
39 | public override string ReferencePublication {
|
---|
40 | get { return ""; }
|
---|
41 | }
|
---|
42 | public int Seed { get; private set; }
|
---|
43 |
|
---|
44 | public FeatureSelectionInstanceProvider() : base() {
|
---|
45 | Seed = (int)DateTime.Now.Ticks;
|
---|
46 | }
|
---|
47 |
|
---|
48 | public FeatureSelectionInstanceProvider(int seed) : base() {
|
---|
49 | Seed = seed;
|
---|
50 | }
|
---|
51 |
|
---|
52 |
|
---|
53 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
54 | var sizes = new int[] { 50, 100, 200 };
|
---|
55 | var pp = new double[] { 0.1, 0.25, 0.5 };
|
---|
56 | var noiseRatios = new double[] { 0.01, 0.05, 0.1, 0.2 };
|
---|
57 | var rand = new MersenneTwister((uint)Seed); // use fixed seed for deterministic problem generation
|
---|
58 |
|
---|
59 | return (from size in sizes
|
---|
60 | from p in pp
|
---|
61 | from noiseRatio in noiseRatios
|
---|
62 | let instanceSeed = rand.Next()
|
---|
63 | let mt = new MersenneTwister((uint)instanceSeed)
|
---|
64 | let xGenerator = new NormalDistributedRandom(mt, 0, 1)
|
---|
65 | let weightGenerator = new UniformDistributedRandom(mt, 0, 10)
|
---|
66 | select new FeatureSelection(size, p, noiseRatio, xGenerator, weightGenerator))
|
---|
67 | .Cast<IDataDescriptor>()
|
---|
68 | .ToList();
|
---|
69 | }
|
---|
70 |
|
---|
71 | public override IRegressionProblemData LoadData(IDataDescriptor descriptor) {
|
---|
72 | var featureSelectionDescriptor = descriptor as FeatureSelection;
|
---|
73 | if (featureSelectionDescriptor == null) throw new ArgumentException("FeatureSelectionInstanceProvider expects an FeatureSelection data descriptor.");
|
---|
74 | // base call generates a regression problem data
|
---|
75 | var regProblemData = base.LoadData(featureSelectionDescriptor);
|
---|
76 | var problemData =
|
---|
77 | new FeatureSelectionRegressionProblemData(
|
---|
78 | regProblemData.Dataset, regProblemData.AllowedInputVariables, regProblemData.TargetVariable,
|
---|
79 | featureSelectionDescriptor.SelectedFeatures, featureSelectionDescriptor.Weights,
|
---|
80 | featureSelectionDescriptor.OptimalRSquared);
|
---|
81 |
|
---|
82 | // copy values from regProblemData to feature selection problem data
|
---|
83 | problemData.Name = regProblemData.Name;
|
---|
84 | problemData.Description = regProblemData.Description;
|
---|
85 | problemData.TrainingPartition.Start = regProblemData.TrainingPartition.Start;
|
---|
86 | problemData.TrainingPartition.End = regProblemData.TrainingPartition.End;
|
---|
87 | problemData.TestPartition.Start = regProblemData.TestPartition.Start;
|
---|
88 | problemData.TestPartition.End = regProblemData.TestPartition.End;
|
---|
89 |
|
---|
90 | return problemData;
|
---|
91 | }
|
---|
92 | }
|
---|
93 | }
|
---|