1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Random;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
30 | public class FeatureSelection : ArtificialRegressionDataDescriptor {
|
---|
31 | private int nTrainingSamples;
|
---|
32 | private int nTestSamples;
|
---|
33 |
|
---|
34 | private int numberOfFeatures;
|
---|
35 | private double selectionProbability;
|
---|
36 | private double noiseRatio;
|
---|
37 | private IRandom xRandom;
|
---|
38 | private IRandom weightRandom;
|
---|
39 |
|
---|
40 | public override string Name { get { return string.Format("FeatSel-{0}-{1:0%}-{2:0%}", numberOfFeatures, selectionProbability, noiseRatio); } }
|
---|
41 | public override string Description {
|
---|
42 | get {
|
---|
43 | return "This problem is specifically designed to test feature selection." + Environment.NewLine
|
---|
44 | + "In this instance the number of rows for training (" + nTrainingSamples +
|
---|
45 | ") is only slightly larger than the number of columns (" + numberOfFeatures +
|
---|
46 | ") and only a subset of the columns must be selected for the predictive model." + Environment.NewLine
|
---|
47 | + "The target variable is calculated as a noisy linear combination of randomly selected features: y = w * S + n." + Environment.NewLine
|
---|
48 | + "Where is the S is a N x d matrix containing the selected columns from N x k the matrix of all features X" + Environment.NewLine
|
---|
49 | + "For each feature the probability that it is selected is " + selectionProbability + "%" + Environment.NewLine
|
---|
50 | + "X(i,j) ~ N(0, 1) iid, w(i) ~ U(0, 10) iid, n ~ N(0, sigma(w*S) * SQRT(" + noiseRatio / (1 - noiseRatio) + "))" + Environment.NewLine
|
---|
51 | + "The noise level is " + noiseRatio + " * sigma, thus an optimal model has R² = "
|
---|
52 | + Math.Round(optimalRSquared, 2) + " (or equivalently: NMSE = " + noiseRatio + ")" + Environment.NewLine
|
---|
53 | + "N = " + (nTrainingSamples + nTestSamples) + " (" + nTrainingSamples + " training, " + nTestSamples + " test)" + Environment.NewLine
|
---|
54 | + "k = " + numberOfFeatures;
|
---|
55 | ;
|
---|
56 | }
|
---|
57 | }
|
---|
58 |
|
---|
59 | private double[] w;
|
---|
60 | public double[] Weights {
|
---|
61 | get { return w; }
|
---|
62 | }
|
---|
63 |
|
---|
64 | private string[] selectedFeatures;
|
---|
65 | public string[] SelectedFeatures {
|
---|
66 | get { return selectedFeatures; }
|
---|
67 | }
|
---|
68 |
|
---|
69 | private double optimalRSquared;
|
---|
70 | public double OptimalRSquared {
|
---|
71 | get { return optimalRSquared; }
|
---|
72 | }
|
---|
73 |
|
---|
74 |
|
---|
75 | public FeatureSelection(int numberOfFeatures, double selectionProbability, double noiseRatio, IRandom xGenerator, IRandom weightGenerator)
|
---|
76 | : this((int)Math.Round(numberOfFeatures * 1.2), 5000, numberOfFeatures,
|
---|
77 | selectionProbability, noiseRatio, xGenerator, weightGenerator) { }
|
---|
78 |
|
---|
79 | public FeatureSelection(int nTrainingSamples, int nTestSamples, int numberOfFeatures,
|
---|
80 | double selectionProbability, double noiseRatio, IRandom xGenerator, IRandom weightGenerator) {
|
---|
81 | this.numberOfFeatures = numberOfFeatures;
|
---|
82 | this.nTrainingSamples = nTrainingSamples;
|
---|
83 | this.nTestSamples = nTestSamples;
|
---|
84 | this.selectionProbability = selectionProbability;
|
---|
85 | this.noiseRatio = noiseRatio;
|
---|
86 | this.xRandom = xGenerator;
|
---|
87 | this.weightRandom = weightGenerator;
|
---|
88 | }
|
---|
89 |
|
---|
90 | protected override string TargetVariable { get { return "Y"; } }
|
---|
91 |
|
---|
92 | protected override string[] VariableNames {
|
---|
93 | get { return AllowedInputVariables.Concat(new string[] { "Y" }).ToArray(); }
|
---|
94 | }
|
---|
95 |
|
---|
96 | protected override string[] AllowedInputVariables {
|
---|
97 | get {
|
---|
98 | return Enumerable.Range(1, numberOfFeatures)
|
---|
99 | .Select(i => string.Format("X{0:000}", i))
|
---|
100 | .ToArray();
|
---|
101 | }
|
---|
102 | }
|
---|
103 |
|
---|
104 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
105 | protected override int TrainingPartitionEnd { get { return nTrainingSamples; } }
|
---|
106 | protected override int TestPartitionStart { get { return nTrainingSamples; } }
|
---|
107 | protected override int TestPartitionEnd { get { return nTrainingSamples + nTestSamples; } }
|
---|
108 |
|
---|
109 |
|
---|
110 | protected override List<List<double>> GenerateValues() {
|
---|
111 | List<List<double>> data = new List<List<double>>();
|
---|
112 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
113 | data.Add(Enumerable.Range(0, TestPartitionEnd)
|
---|
114 | .Select(_ => xRandom.NextDouble())
|
---|
115 | .ToList());
|
---|
116 | }
|
---|
117 |
|
---|
118 | var random = new MersenneTwister();
|
---|
119 | var selectedFeatures =
|
---|
120 | Enumerable.Range(0, AllowedInputVariables.Count())
|
---|
121 | .Where(_ => random.NextDouble() < selectionProbability)
|
---|
122 | .ToArray();
|
---|
123 |
|
---|
124 | w = selectedFeatures.Select(_ => weightRandom.NextDouble()).ToArray();
|
---|
125 | var target = new List<double>();
|
---|
126 | for (int i = 0; i < data[0].Count; i++) {
|
---|
127 | var s = selectedFeatures
|
---|
128 | .Select(index => data[index][i])
|
---|
129 | .ToArray();
|
---|
130 | target.Add(ScalarProd(s, w));
|
---|
131 | }
|
---|
132 | var targetSigma = target.StandardDeviation();
|
---|
133 | var noisePrng = new NormalDistributedRandom(random, 0, targetSigma * Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
|
---|
134 |
|
---|
135 | data.Add(target.Select(t => t + noisePrng.NextDouble()).ToList());
|
---|
136 |
|
---|
137 | // set property listing the selected features as string[]
|
---|
138 | this.selectedFeatures = selectedFeatures.Select(i => AllowedInputVariables[i]).ToArray();
|
---|
139 | optimalRSquared = 1 - noiseRatio;
|
---|
140 | return data;
|
---|
141 | }
|
---|
142 |
|
---|
143 | private double ScalarProd(double[] s, double[] w) {
|
---|
144 | if (s.Length != w.Length) throw new ArgumentException();
|
---|
145 | return s.Zip(w, (a, b) => a * b).Sum();
|
---|
146 | }
|
---|
147 | }
|
---|
148 | }
|
---|