[7860] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7860] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[8598] | 23 | using System.Collections;
|
---|
[7860] | 24 | using System.Collections.Generic;
|
---|
[8180] | 25 | using System.IO;
|
---|
[8192] | 26 | using System.Linq;
|
---|
[8566] | 27 | using HeuristicLab.Common;
|
---|
[7860] | 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[8192] | 29 |
|
---|
[7860] | 30 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 31 | public class ClassificationCSVInstanceProvider : ClassificationInstanceProvider {
|
---|
| 32 | public override string Name {
|
---|
[8211] | 33 | get { return "CSV File"; }
|
---|
[7860] | 34 | }
|
---|
| 35 | public override string Description {
|
---|
| 36 | get {
|
---|
| 37 | return "";
|
---|
| 38 | }
|
---|
| 39 | }
|
---|
| 40 | public override Uri WebLink {
|
---|
[11335] | 41 | get { return new Uri("http://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/FAQ#DataAnalysisImportFileFormat"); }
|
---|
[7860] | 42 | }
|
---|
| 43 | public override string ReferencePublication {
|
---|
| 44 | get { return ""; }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
[8192] | 47 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
| 48 | return new List<IDataDescriptor>();
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | public override IClassificationProblemData LoadData(IDataDescriptor descriptor) {
|
---|
| 52 | throw new NotImplementedException();
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public override bool CanImportData {
|
---|
[8180] | 56 | get { return true; }
|
---|
| 57 | }
|
---|
[8192] | 58 | public override IClassificationProblemData ImportData(string path) {
|
---|
| 59 | TableFileParser csvFileParser = new TableFileParser();
|
---|
[8180] | 60 |
|
---|
[9651] | 61 | csvFileParser.Parse(path, csvFileParser.AreColumnNamesInFirstLine(path));
|
---|
[8192] | 62 |
|
---|
| 63 | Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values);
|
---|
[8566] | 64 | string targetVar = dataset.DoubleVariables.Last();
|
---|
[8192] | 65 |
|
---|
[8566] | 66 | // turn of input variables that are constant in the training partition
|
---|
| 67 | var allowedInputVars = new List<string>();
|
---|
| 68 | var trainingIndizes = Enumerable.Range(0, (csvFileParser.Rows * 2) / 3);
|
---|
[8601] | 69 | if (trainingIndizes.Count() >= 2) {
|
---|
| 70 | foreach (var variableName in dataset.DoubleVariables) {
|
---|
| 71 | if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 &&
|
---|
| 72 | variableName != targetVar)
|
---|
| 73 | allowedInputVars.Add(variableName);
|
---|
| 74 | }
|
---|
| 75 | } else {
|
---|
[8877] | 76 | allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(targetVar)));
|
---|
[8192] | 77 | }
|
---|
| 78 |
|
---|
[8566] | 79 | ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, targetVar);
|
---|
| 80 |
|
---|
| 81 | int trainingPartEnd = trainingIndizes.Last();
|
---|
| 82 | classificationData.TrainingPartition.Start = trainingIndizes.First();
|
---|
| 83 | classificationData.TrainingPartition.End = trainingPartEnd;
|
---|
| 84 | classificationData.TestPartition.Start = trainingPartEnd;
|
---|
| 85 | classificationData.TestPartition.End = csvFileParser.Rows;
|
---|
| 86 |
|
---|
| 87 | classificationData.Name = Path.GetFileName(path);
|
---|
| 88 |
|
---|
| 89 | return classificationData;
|
---|
[7860] | 90 | }
|
---|
| 91 |
|
---|
[8877] | 92 | protected override IClassificationProblemData ImportData(string path, ClassificationImportType type, TableFileParser csvFileParser) {
|
---|
[9021] | 93 | int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100;
|
---|
[8598] | 94 | List<IList> values = csvFileParser.Values;
|
---|
| 95 | if (type.Shuffle) {
|
---|
[8885] | 96 | values = Shuffle(values);
|
---|
| 97 | if (type.UniformlyDistributeClasses) {
|
---|
| 98 | values = Shuffle(values, csvFileParser.VariableNames.ToList().FindIndex(x => x.Equals(type.TargetVariable)),
|
---|
[9021] | 99 | type.TrainingPercentage, out trainingPartEnd);
|
---|
[8885] | 100 | }
|
---|
[8598] | 101 | }
|
---|
| 102 |
|
---|
| 103 | Dataset dataset = new Dataset(csvFileParser.VariableNames, values);
|
---|
| 104 |
|
---|
| 105 | // turn of input variables that are constant in the training partition
|
---|
| 106 | var allowedInputVars = new List<string>();
|
---|
[8599] | 107 | var trainingIndizes = Enumerable.Range(0, trainingPartEnd);
|
---|
[8877] | 108 | if (trainingIndizes.Count() >= 2) {
|
---|
| 109 | foreach (var variableName in dataset.DoubleVariables) {
|
---|
| 110 | if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 &&
|
---|
| 111 | variableName != type.TargetVariable)
|
---|
| 112 | allowedInputVars.Add(variableName);
|
---|
| 113 | }
|
---|
| 114 | } else {
|
---|
| 115 | allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(type.TargetVariable)));
|
---|
[8598] | 116 | }
|
---|
| 117 |
|
---|
[8877] | 118 | ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, type.TargetVariable);
|
---|
[8598] | 119 |
|
---|
[8599] | 120 | classificationData.TrainingPartition.Start = 0;
|
---|
[8598] | 121 | classificationData.TrainingPartition.End = trainingPartEnd;
|
---|
| 122 | classificationData.TestPartition.Start = trainingPartEnd;
|
---|
| 123 | classificationData.TestPartition.End = csvFileParser.Rows;
|
---|
| 124 |
|
---|
| 125 | classificationData.Name = Path.GetFileName(path);
|
---|
| 126 |
|
---|
| 127 | return classificationData;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[8877] | 130 | protected List<IList> Shuffle(List<IList> values, int target, int trainingPercentage, out int trainingPartEnd) {
|
---|
| 131 | IList targetValues = values[target];
|
---|
| 132 | var group = targetValues.Cast<double>().GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList();
|
---|
| 133 | Dictionary<double, double> taken = new Dictionary<double, double>();
|
---|
| 134 | foreach (var classCount in group) {
|
---|
| 135 | taken[classCount.Key] = (classCount.Count * trainingPercentage) / 100.0;
|
---|
[8180] | 136 | }
|
---|
| 137 |
|
---|
[8877] | 138 | List<IList> training = GetListOfIListCopy(values);
|
---|
| 139 | List<IList> test = GetListOfIListCopy(values);
|
---|
[8180] | 140 |
|
---|
[8877] | 141 | for (int i = 0; i < targetValues.Count; i++) {
|
---|
| 142 | if (taken[(double)targetValues[i]] > 0) {
|
---|
| 143 | AddRow(training, values, i);
|
---|
| 144 | taken[(double)targetValues[i]]--;
|
---|
| 145 | } else {
|
---|
| 146 | AddRow(test, values, i);
|
---|
[8180] | 147 | }
|
---|
| 148 | }
|
---|
| 149 |
|
---|
[8877] | 150 | trainingPartEnd = training.First().Count;
|
---|
| 151 |
|
---|
| 152 | for (int i = 0; i < training.Count; i++) {
|
---|
| 153 | for (int j = 0; j < test[i].Count; j++) {
|
---|
| 154 | training[i].Add(test[i][j]);
|
---|
| 155 | }
|
---|
[8180] | 156 | }
|
---|
[8877] | 157 |
|
---|
| 158 | return training;
|
---|
[8180] | 159 | }
|
---|
[8877] | 160 |
|
---|
| 161 | private void AddRow(List<IList> destination, List<IList> source, int index) {
|
---|
| 162 | for (int i = 0; i < source.Count; i++) {
|
---|
| 163 | destination[i].Add(source[i][index]);
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | private List<IList> GetListOfIListCopy(List<IList> values) {
|
---|
| 168 | List<IList> newList = new List<IList>(values.Count);
|
---|
| 169 | foreach (IList t in values) {
|
---|
| 170 | if (t is List<double>)
|
---|
| 171 | newList.Add(new List<double>());
|
---|
| 172 | else if (t is List<DateTime>)
|
---|
| 173 | newList.Add(new List<DateTime>());
|
---|
| 174 | else if (t is List<string>)
|
---|
| 175 | newList.Add(new List<string>());
|
---|
| 176 | else
|
---|
| 177 | throw new InvalidOperationException();
|
---|
| 178 | }
|
---|
| 179 | return newList;
|
---|
| 180 | }
|
---|
[7860] | 181 | }
|
---|
| 182 | }
|
---|