1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
27 | public class OnlineNormalizedMeanSquaredErrorCalculator : DeepCloneable, IOnlineCalculator {
|
---|
28 | private OnlineMeanAndVarianceCalculator meanSquaredErrorCalculator;
|
---|
29 | private OnlineMeanAndVarianceCalculator originalVarianceCalculator;
|
---|
30 |
|
---|
31 | public double NormalizedMeanSquaredError {
|
---|
32 | get {
|
---|
33 | double var = originalVarianceCalculator.PopulationVariance;
|
---|
34 | double m = meanSquaredErrorCalculator.Mean;
|
---|
35 | return var > 0 ? m / var : 0.0;
|
---|
36 | }
|
---|
37 | }
|
---|
38 |
|
---|
39 | public OnlineNormalizedMeanSquaredErrorCalculator() {
|
---|
40 | meanSquaredErrorCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
41 | originalVarianceCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
42 | Reset();
|
---|
43 | }
|
---|
44 |
|
---|
45 | protected OnlineNormalizedMeanSquaredErrorCalculator(OnlineNormalizedMeanSquaredErrorCalculator original, Cloner cloner)
|
---|
46 | : base(original, cloner) {
|
---|
47 | meanSquaredErrorCalculator = cloner.Clone(original.meanSquaredErrorCalculator);
|
---|
48 | originalVarianceCalculator = cloner.Clone(original.originalVarianceCalculator);
|
---|
49 | }
|
---|
50 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
51 | return new OnlineNormalizedMeanSquaredErrorCalculator(this, cloner);
|
---|
52 | }
|
---|
53 |
|
---|
54 | #region IOnlineCalculator Members
|
---|
55 | public OnlineCalculatorError ErrorState {
|
---|
56 | get { return meanSquaredErrorCalculator.MeanErrorState | originalVarianceCalculator.PopulationVarianceErrorState; }
|
---|
57 | }
|
---|
58 | public double Value {
|
---|
59 | get { return NormalizedMeanSquaredError; }
|
---|
60 | }
|
---|
61 |
|
---|
62 | public void Reset() {
|
---|
63 | meanSquaredErrorCalculator.Reset();
|
---|
64 | originalVarianceCalculator.Reset();
|
---|
65 | }
|
---|
66 |
|
---|
67 | public void Add(double original, double estimated) {
|
---|
68 | // no need to check for validity of values explicitly as it is checked in the meanAndVariance calculator anyway
|
---|
69 | double error = estimated - original;
|
---|
70 | meanSquaredErrorCalculator.Add(error * error);
|
---|
71 | originalVarianceCalculator.Add(original);
|
---|
72 | }
|
---|
73 | #endregion
|
---|
74 |
|
---|
75 | public static double Calculate(IEnumerable<double> originalValues, IEnumerable<double> estimatedValues, out OnlineCalculatorError errorState) {
|
---|
76 | IEnumerator<double> originalEnumerator = originalValues.GetEnumerator();
|
---|
77 | IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator();
|
---|
78 | OnlineNormalizedMeanSquaredErrorCalculator normalizedMSECalculator = new OnlineNormalizedMeanSquaredErrorCalculator();
|
---|
79 |
|
---|
80 | //needed because otherwise the normalizedMSECalculator is in ErrorState.InsufficientValuesAdded
|
---|
81 | if (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
82 | double original = originalEnumerator.Current;
|
---|
83 | double estimated = estimatedEnumerator.Current;
|
---|
84 | normalizedMSECalculator.Add(original, estimated);
|
---|
85 | }
|
---|
86 |
|
---|
87 | // always move forward both enumerators (do not use short-circuit evaluation!)
|
---|
88 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
89 | double original = originalEnumerator.Current;
|
---|
90 | double estimated = estimatedEnumerator.Current;
|
---|
91 | normalizedMSECalculator.Add(original, estimated);
|
---|
92 | if (normalizedMSECalculator.ErrorState != OnlineCalculatorError.None) break;
|
---|
93 | }
|
---|
94 |
|
---|
95 | // check if both enumerators are at the end to make sure both enumerations have the same length
|
---|
96 | if (normalizedMSECalculator.ErrorState == OnlineCalculatorError.None &&
|
---|
97 | (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) {
|
---|
98 | throw new ArgumentException("Number of elements in originalValues and estimatedValues enumeration doesn't match.");
|
---|
99 | } else {
|
---|
100 | errorState = normalizedMSECalculator.ErrorState;
|
---|
101 | return normalizedMSECalculator.NormalizedMeanSquaredError;
|
---|
102 | }
|
---|
103 | }
|
---|
104 |
|
---|
105 |
|
---|
106 | }
|
---|
107 | }
|
---|