1 | using System.Collections.Generic;
|
---|
2 | using System.Linq;
|
---|
3 | using HeuristicLab.Common;
|
---|
4 | using HeuristicLab.Core;
|
---|
5 | using HeuristicLab.Data;
|
---|
6 | using HeuristicLab.Parameters;
|
---|
7 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
8 |
|
---|
9 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
10 | [StorableClass]
|
---|
11 | [Item("Shift Standard Distribution Transformation", "f(x) = ((x - m_org) / s_org ) * s_tar + m_tar | Represents Transformation to unit standard deviation and additional linear transformation to a target Mean and Standard deviation")]
|
---|
12 | public class ShiftStandardDistributionTransformation : Transformation<double> {
|
---|
13 | protected const string OriginalMeanParameterName = "Original Mean";
|
---|
14 | protected const string OriginalStandardDeviationParameterName = "Original Standard Deviation";
|
---|
15 | protected const string MeanParameterName = "Mean";
|
---|
16 | protected const string StandardDeviationParameterName = "Standard Deviation";
|
---|
17 |
|
---|
18 | #region Parameters
|
---|
19 | public IValueParameter<DoubleValue> OriginalMeanParameter {
|
---|
20 | get { return (IValueParameter<DoubleValue>)Parameters[OriginalMeanParameterName]; }
|
---|
21 | }
|
---|
22 | public IValueParameter<DoubleValue> OriginalStandardDeviationParameter {
|
---|
23 | get { return (IValueParameter<DoubleValue>)Parameters[OriginalStandardDeviationParameterName]; }
|
---|
24 | }
|
---|
25 | public IValueParameter<DoubleValue> MeanParameter {
|
---|
26 | get { return (IValueParameter<DoubleValue>)Parameters[MeanParameterName]; }
|
---|
27 | }
|
---|
28 | public IValueParameter<DoubleValue> StandardDeviationParameter {
|
---|
29 | get { return (IValueParameter<DoubleValue>)Parameters[StandardDeviationParameterName]; }
|
---|
30 | }
|
---|
31 | #endregion
|
---|
32 |
|
---|
33 | #region properties
|
---|
34 | public override string ShortName {
|
---|
35 | get { return "Std"; }
|
---|
36 | }
|
---|
37 | public double OriginalMean {
|
---|
38 | get { return OriginalMeanParameter.Value.Value; }
|
---|
39 | set { OriginalMeanParameter.Value.Value = value; }
|
---|
40 | }
|
---|
41 | public double OriginalStandardDeviation {
|
---|
42 | get { return OriginalStandardDeviationParameter.Value.Value; }
|
---|
43 | set { OriginalStandardDeviationParameter.Value.Value = value; }
|
---|
44 | }
|
---|
45 | public double Mean {
|
---|
46 | get { return MeanParameter.Value.Value; }
|
---|
47 | }
|
---|
48 | public double StandardDeviation {
|
---|
49 | get { return StandardDeviationParameter.Value.Value; }
|
---|
50 | }
|
---|
51 | #endregion
|
---|
52 |
|
---|
53 | [StorableConstructor]
|
---|
54 | protected ShiftStandardDistributionTransformation(bool deserializing) : base(deserializing) { }
|
---|
55 | protected ShiftStandardDistributionTransformation(ShiftStandardDistributionTransformation original, Cloner cloner)
|
---|
56 | : base(original, cloner) {
|
---|
57 | }
|
---|
58 | public ShiftStandardDistributionTransformation(IEnumerable<string> allowedColumns)
|
---|
59 | : base(allowedColumns) {
|
---|
60 | Parameters.Add(new ValueParameter<DoubleValue>(OriginalMeanParameterName, "m_org | Mean value of the original data's deviation.", new DoubleValue()));
|
---|
61 | Parameters.Add(new ValueParameter<DoubleValue>(OriginalStandardDeviationParameterName, "s_org | Standard deviation of the original data.", new DoubleValue()));
|
---|
62 | OriginalMeanParameter.Hidden = true;
|
---|
63 | OriginalStandardDeviationParameter.Hidden = true;
|
---|
64 | Parameters.Add(new ValueParameter<DoubleValue>(MeanParameterName, "m_tar | Mean value for the target deviation.", new DoubleValue(0.0)));
|
---|
65 | Parameters.Add(new ValueParameter<DoubleValue>(StandardDeviationParameterName, "s_tar | Standard deviation for the target data.", new DoubleValue(1.0)));
|
---|
66 | }
|
---|
67 |
|
---|
68 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
69 | return new ShiftStandardDistributionTransformation(this, cloner);
|
---|
70 | }
|
---|
71 |
|
---|
72 | public override IEnumerable<double> Apply(IEnumerable<double> data) {
|
---|
73 | ConfigureParameters(data);
|
---|
74 | if (OriginalStandardDeviation.IsAlmost(0.0)) {
|
---|
75 | return data;
|
---|
76 | }
|
---|
77 | var old_m = OriginalMean;
|
---|
78 | var old_s = OriginalStandardDeviation;
|
---|
79 | var m = Mean;
|
---|
80 | var s = StandardDeviation;
|
---|
81 | return data
|
---|
82 | .Select(d => (d - old_m) / old_s) // standardized
|
---|
83 | .Select(d => d * s + m);
|
---|
84 | }
|
---|
85 |
|
---|
86 | public override bool Check(IEnumerable<double> data, out string errorMsg) {
|
---|
87 | ConfigureParameters(data);
|
---|
88 | errorMsg = "";
|
---|
89 | if (OriginalStandardDeviation.IsAlmost(0.0)) {
|
---|
90 | errorMsg = "Standard deviaton for the original data is 0.0, Transformation cannot be applied onto these values.";
|
---|
91 | return false;
|
---|
92 | }
|
---|
93 | return true;
|
---|
94 | }
|
---|
95 |
|
---|
96 | protected void ConfigureParameters(IEnumerable<double> data) {
|
---|
97 | OriginalStandardDeviation = data.StandardDeviation();
|
---|
98 | OriginalMean = data.Average();
|
---|
99 | }
|
---|
100 | }
|
---|
101 | }
|
---|