[8010] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8010] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
[8486] | 24 | using System.Linq;
|
---|
[8010] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 30 | [StorableClass]
|
---|
| 31 | [Item("Autoregressive TimeSeries Model", "A linear autoregressive time series model used to predict future values.")]
|
---|
[14027] | 32 | public class TimeSeriesPrognosisAutoRegressiveModel : RegressionModel, ITimeSeriesPrognosisModel {
|
---|
| 33 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
| 34 | get { return new[] { TargetVariable }; }
|
---|
| 35 | }
|
---|
| 36 |
|
---|
[8010] | 37 | [Storable]
|
---|
[8430] | 38 | public double[] Phi { get; private set; }
|
---|
[8010] | 39 | [Storable]
|
---|
[8430] | 40 | public double Constant { get; private set; }
|
---|
[8010] | 41 |
|
---|
[8468] | 42 | public int TimeOffset { get { return Phi.Length; } }
|
---|
| 43 |
|
---|
[8010] | 44 | [StorableConstructor]
|
---|
| 45 | protected TimeSeriesPrognosisAutoRegressiveModel(bool deserializing) : base(deserializing) { }
|
---|
| 46 | protected TimeSeriesPrognosisAutoRegressiveModel(TimeSeriesPrognosisAutoRegressiveModel original, Cloner cloner)
|
---|
| 47 | : base(original, cloner) {
|
---|
[8430] | 48 | this.Phi = (double[])original.Phi.Clone();
|
---|
| 49 | this.Constant = original.Constant;
|
---|
[8010] | 50 | }
|
---|
| 51 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 52 | return new TimeSeriesPrognosisAutoRegressiveModel(this, cloner);
|
---|
| 53 | }
|
---|
[8468] | 54 | public TimeSeriesPrognosisAutoRegressiveModel(string targetVariable, double[] phi, double constant)
|
---|
[14027] | 55 | : base(targetVariable, "AR(1) Model") {
|
---|
[8468] | 56 | Phi = (double[])phi.Clone();
|
---|
| 57 | Constant = constant;
|
---|
[8010] | 58 | }
|
---|
| 59 |
|
---|
[12702] | 60 | public IEnumerable<IEnumerable<double>> GetPrognosedValues(IDataset dataset, IEnumerable<int> rows, IEnumerable<int> horizons) {
|
---|
[8010] | 61 | var rowsEnumerator = rows.GetEnumerator();
|
---|
| 62 | var horizonsEnumerator = horizons.GetEnumerator();
|
---|
[8468] | 63 | var targetValues = dataset.GetReadOnlyDoubleValues(TargetVariable);
|
---|
[8010] | 64 | // produce a n-step forecast for all rows
|
---|
| 65 | while (rowsEnumerator.MoveNext() & horizonsEnumerator.MoveNext()) {
|
---|
| 66 | int row = rowsEnumerator.Current;
|
---|
| 67 | int horizon = horizonsEnumerator.Current;
|
---|
[8486] | 68 | if (row - TimeOffset < 0) {
|
---|
| 69 | yield return Enumerable.Repeat(double.NaN, horizon);
|
---|
| 70 | continue;
|
---|
| 71 | }
|
---|
| 72 |
|
---|
[8010] | 73 | double[] prognosis = new double[horizon];
|
---|
[8468] | 74 | for (int h = 0; h < horizon; h++) {
|
---|
| 75 | double estimatedValue = 0.0;
|
---|
[8486] | 76 | for (int i = 1; i <= TimeOffset; i++) {
|
---|
[8468] | 77 | int offset = h - i;
|
---|
| 78 | if (offset >= 0) estimatedValue += prognosis[offset] * Phi[i - 1];
|
---|
| 79 | else estimatedValue += targetValues[row + offset] * Phi[i - 1];
|
---|
| 80 |
|
---|
| 81 | }
|
---|
| 82 | estimatedValue += Constant;
|
---|
| 83 | prognosis[h] = estimatedValue;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
[8010] | 86 | yield return prognosis;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | if (rowsEnumerator.MoveNext() || horizonsEnumerator.MoveNext())
|
---|
| 90 | throw new ArgumentException("Number of elements in rows and horizon enumerations doesn't match.");
|
---|
| 91 | }
|
---|
| 92 |
|
---|
[14027] | 93 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[8468] | 94 | var targetVariables = dataset.GetReadOnlyDoubleValues(TargetVariable);
|
---|
| 95 | foreach (int row in rows) {
|
---|
| 96 | double estimatedValue = 0.0;
|
---|
[8486] | 97 | if (row - TimeOffset < 0) {
|
---|
| 98 | yield return double.NaN;
|
---|
| 99 | continue;
|
---|
| 100 | }
|
---|
| 101 |
|
---|
[8468] | 102 | for (int i = 1; i <= TimeOffset; i++) {
|
---|
| 103 | estimatedValue += targetVariables[row - i] * Phi[i - 1];
|
---|
| 104 | }
|
---|
| 105 | estimatedValue += Constant;
|
---|
| 106 | yield return estimatedValue;
|
---|
| 107 | }
|
---|
[8458] | 108 | }
|
---|
| 109 |
|
---|
[8010] | 110 | public ITimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
[8857] | 111 | return new TimeSeriesPrognosisSolution(this, new TimeSeriesPrognosisProblemData(problemData));
|
---|
[8010] | 112 | }
|
---|
[14027] | 113 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[8458] | 114 | throw new NotSupportedException();
|
---|
| 115 | }
|
---|
[8010] | 116 |
|
---|
| 117 | }
|
---|
| 118 | }
|
---|