[5816] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5816] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[6588] | 22 | using System;
|
---|
[5816] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[6612] | 25 | using HeuristicLab.Collections;
|
---|
[5816] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
[6588] | 28 | using HeuristicLab.Data;
|
---|
[5816] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 32 | /// <summary>
|
---|
| 33 | /// Represents regression solutions that contain an ensemble of multiple regression models
|
---|
| 34 | /// </summary>
|
---|
| 35 | [StorableClass]
|
---|
| 36 | [Item("Regression Ensemble Solution", "A regression solution that contains an ensemble of multiple regression models")]
|
---|
[12708] | 37 | [Creatable(CreatableAttribute.Categories.DataAnalysisEnsembles, Priority = 100)]
|
---|
[8724] | 38 | public sealed class RegressionEnsembleSolution : RegressionSolutionBase, IRegressionEnsembleSolution {
|
---|
[8167] | 39 | private readonly Dictionary<int, double> trainingEvaluationCache = new Dictionary<int, double>();
|
---|
| 40 | private readonly Dictionary<int, double> testEvaluationCache = new Dictionary<int, double>();
|
---|
[8724] | 41 | private readonly Dictionary<int, double> evaluationCache = new Dictionary<int, double>();
|
---|
[8151] | 42 |
|
---|
[5816] | 43 | public new IRegressionEnsembleModel Model {
|
---|
| 44 | get { return (IRegressionEnsembleModel)base.Model; }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
[6666] | 47 | public new RegressionEnsembleProblemData ProblemData {
|
---|
| 48 | get { return (RegressionEnsembleProblemData)base.ProblemData; }
|
---|
| 49 | set { base.ProblemData = value; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
[13049] | 52 | [Storable]
|
---|
[6612] | 53 | private readonly ItemCollection<IRegressionSolution> regressionSolutions;
|
---|
| 54 | public IItemCollection<IRegressionSolution> RegressionSolutions {
|
---|
| 55 | get { return regressionSolutions; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
[5816] | 58 | [Storable]
|
---|
[8152] | 59 | private readonly Dictionary<IRegressionModel, IntRange> trainingPartitions;
|
---|
[5816] | 60 | [Storable]
|
---|
[8152] | 61 | private readonly Dictionary<IRegressionModel, IntRange> testPartitions;
|
---|
[5816] | 62 |
|
---|
| 63 | [StorableConstructor]
|
---|
[6612] | 64 | private RegressionEnsembleSolution(bool deserializing)
|
---|
| 65 | : base(deserializing) {
|
---|
| 66 | regressionSolutions = new ItemCollection<IRegressionSolution>();
|
---|
| 67 | }
|
---|
| 68 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 69 | private void AfterDeserialization() {
|
---|
[13049] | 70 | if (!regressionSolutions.Any()) {
|
---|
| 71 | foreach (var model in Model.Models) {
|
---|
| 72 | IRegressionProblemData problemData = (IRegressionProblemData)ProblemData.Clone();
|
---|
| 73 | problemData.TrainingPartition.Start = trainingPartitions[model].Start;
|
---|
| 74 | problemData.TrainingPartition.End = trainingPartitions[model].End;
|
---|
| 75 | problemData.TestPartition.Start = testPartitions[model].Start;
|
---|
| 76 | problemData.TestPartition.End = testPartitions[model].End;
|
---|
[6612] | 77 |
|
---|
[13049] | 78 | regressionSolutions.Add(model.CreateRegressionSolution(problemData));
|
---|
| 79 | }
|
---|
[6612] | 80 | }
|
---|
| 81 | RegisterRegressionSolutionsEventHandler();
|
---|
| 82 | }
|
---|
| 83 |
|
---|
[6592] | 84 | private RegressionEnsembleSolution(RegressionEnsembleSolution original, Cloner cloner)
|
---|
[5816] | 85 | : base(original, cloner) {
|
---|
[6239] | 86 | trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
| 87 | testPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
[6302] | 88 | foreach (var pair in original.trainingPartitions) {
|
---|
| 89 | trainingPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
|
---|
[6239] | 90 | }
|
---|
[6302] | 91 | foreach (var pair in original.testPartitions) {
|
---|
| 92 | testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value);
|
---|
| 93 | }
|
---|
[6612] | 94 |
|
---|
[8174] | 95 | trainingEvaluationCache = new Dictionary<int, double>(original.ProblemData.TrainingIndices.Count());
|
---|
| 96 | testEvaluationCache = new Dictionary<int, double>(original.ProblemData.TestIndices.Count());
|
---|
| 97 |
|
---|
[6612] | 98 | regressionSolutions = cloner.Clone(original.regressionSolutions);
|
---|
| 99 | RegisterRegressionSolutionsEventHandler();
|
---|
[5816] | 100 | }
|
---|
[6239] | 101 |
|
---|
[6666] | 102 | public RegressionEnsembleSolution()
|
---|
| 103 | : base(new RegressionEnsembleModel(), RegressionEnsembleProblemData.EmptyProblemData) {
|
---|
| 104 | trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
| 105 | testPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
| 106 | regressionSolutions = new ItemCollection<IRegressionSolution>();
|
---|
| 107 |
|
---|
| 108 | RegisterRegressionSolutionsEventHandler();
|
---|
| 109 | }
|
---|
| 110 |
|
---|
[7738] | 111 | public RegressionEnsembleSolution(IRegressionProblemData problemData)
|
---|
| 112 | : this(Enumerable.Empty<IRegressionModel>(), problemData) {
|
---|
| 113 | }
|
---|
| 114 |
|
---|
[5816] | 115 | public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData)
|
---|
[6612] | 116 | : this(models, problemData,
|
---|
| 117 | models.Select(m => (IntRange)problemData.TrainingPartition.Clone()),
|
---|
| 118 | models.Select(m => (IntRange)problemData.TestPartition.Clone())
|
---|
| 119 | ) { }
|
---|
[5816] | 120 |
|
---|
| 121 | public RegressionEnsembleSolution(IEnumerable<IRegressionModel> models, IRegressionProblemData problemData, IEnumerable<IntRange> trainingPartitions, IEnumerable<IntRange> testPartitions)
|
---|
[6612] | 122 | : base(new RegressionEnsembleModel(Enumerable.Empty<IRegressionModel>()), new RegressionEnsembleProblemData(problemData)) {
|
---|
[5816] | 123 | this.trainingPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
| 124 | this.testPartitions = new Dictionary<IRegressionModel, IntRange>();
|
---|
[6612] | 125 | this.regressionSolutions = new ItemCollection<IRegressionSolution>();
|
---|
| 126 |
|
---|
| 127 | List<IRegressionSolution> solutions = new List<IRegressionSolution>();
|
---|
| 128 | var modelEnumerator = models.GetEnumerator();
|
---|
| 129 | var trainingPartitionEnumerator = trainingPartitions.GetEnumerator();
|
---|
| 130 | var testPartitionEnumerator = testPartitions.GetEnumerator();
|
---|
| 131 |
|
---|
| 132 | while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) {
|
---|
| 133 | var p = (IRegressionProblemData)problemData.Clone();
|
---|
| 134 | p.TrainingPartition.Start = trainingPartitionEnumerator.Current.Start;
|
---|
| 135 | p.TrainingPartition.End = trainingPartitionEnumerator.Current.End;
|
---|
| 136 | p.TestPartition.Start = testPartitionEnumerator.Current.Start;
|
---|
| 137 | p.TestPartition.End = testPartitionEnumerator.Current.End;
|
---|
| 138 |
|
---|
| 139 | solutions.Add(modelEnumerator.Current.CreateRegressionSolution(p));
|
---|
| 140 | }
|
---|
| 141 | if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) {
|
---|
| 142 | throw new ArgumentException();
|
---|
| 143 | }
|
---|
| 144 |
|
---|
[8174] | 145 | trainingEvaluationCache = new Dictionary<int, double>(problemData.TrainingIndices.Count());
|
---|
| 146 | testEvaluationCache = new Dictionary<int, double>(problemData.TestIndices.Count());
|
---|
| 147 |
|
---|
[6612] | 148 | RegisterRegressionSolutionsEventHandler();
|
---|
| 149 | regressionSolutions.AddRange(solutions);
|
---|
[5816] | 150 | }
|
---|
| 151 |
|
---|
| 152 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 153 | return new RegressionEnsembleSolution(this, cloner);
|
---|
| 154 | }
|
---|
[6612] | 155 | private void RegisterRegressionSolutionsEventHandler() {
|
---|
| 156 | regressionSolutions.ItemsAdded += new CollectionItemsChangedEventHandler<IRegressionSolution>(regressionSolutions_ItemsAdded);
|
---|
| 157 | regressionSolutions.ItemsRemoved += new CollectionItemsChangedEventHandler<IRegressionSolution>(regressionSolutions_ItemsRemoved);
|
---|
| 158 | regressionSolutions.CollectionReset += new CollectionItemsChangedEventHandler<IRegressionSolution>(regressionSolutions_CollectionReset);
|
---|
| 159 | }
|
---|
[5816] | 160 |
|
---|
[6612] | 161 | #region Evaluation
|
---|
[8724] | 162 | public override IEnumerable<double> EstimatedValues {
|
---|
| 163 | get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
| 164 | }
|
---|
| 165 |
|
---|
[5816] | 166 | public override IEnumerable<double> EstimatedTrainingValues {
|
---|
[8152] | 167 | get {
|
---|
| 168 | var rows = ProblemData.TrainingIndices;
|
---|
[8167] | 169 | var rowsToEvaluate = rows.Except(trainingEvaluationCache.Keys);
|
---|
[8152] | 170 | var rowsEnumerator = rowsToEvaluate.GetEnumerator();
|
---|
| 171 | var valuesEnumerator = GetEstimatedValues(rowsToEvaluate, (r, m) => RowIsTrainingForModel(r, m) && !RowIsTestForModel(r, m)).GetEnumerator();
|
---|
| 172 |
|
---|
| 173 | while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
|
---|
[8167] | 174 | trainingEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
|
---|
[8152] | 175 | }
|
---|
| 176 |
|
---|
[8167] | 177 | return rows.Select(row => trainingEvaluationCache[row]);
|
---|
[8152] | 178 | }
|
---|
[5816] | 179 | }
|
---|
| 180 |
|
---|
| 181 | public override IEnumerable<double> EstimatedTestValues {
|
---|
[8152] | 182 | get {
|
---|
| 183 | var rows = ProblemData.TestIndices;
|
---|
[8167] | 184 | var rowsToEvaluate = rows.Except(testEvaluationCache.Keys);
|
---|
[8152] | 185 | var rowsEnumerator = rowsToEvaluate.GetEnumerator();
|
---|
| 186 | var valuesEnumerator = GetEstimatedValues(rowsToEvaluate, RowIsTestForModel).GetEnumerator();
|
---|
| 187 |
|
---|
| 188 | while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
|
---|
[8167] | 189 | testEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
|
---|
[8152] | 190 | }
|
---|
| 191 |
|
---|
[8167] | 192 | return rows.Select(row => testEvaluationCache[row]);
|
---|
[8152] | 193 | }
|
---|
[8151] | 194 | }
|
---|
[5816] | 195 |
|
---|
[8151] | 196 | private IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows, Func<int, IRegressionModel, bool> modelSelectionPredicate) {
|
---|
| 197 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
| 198 | select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, rows).GetEnumerator() })
|
---|
| 199 | .ToList();
|
---|
| 200 | var rowsEnumerator = rows.GetEnumerator();
|
---|
| 201 | // aggregate to make sure that MoveNext is called for all enumerators
|
---|
| 202 | while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) {
|
---|
| 203 | int currentRow = rowsEnumerator.Current;
|
---|
[5816] | 204 |
|
---|
[8151] | 205 | var selectedEnumerators = from pair in estimatedValuesEnumerators
|
---|
| 206 | where modelSelectionPredicate(currentRow, pair.Model)
|
---|
| 207 | select pair.EstimatedValuesEnumerator;
|
---|
| 208 |
|
---|
| 209 | yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current));
|
---|
[5816] | 210 | }
|
---|
| 211 | }
|
---|
| 212 |
|
---|
[6254] | 213 | private bool RowIsTrainingForModel(int currentRow, IRegressionModel model) {
|
---|
| 214 | return trainingPartitions == null || !trainingPartitions.ContainsKey(model) ||
|
---|
| 215 | (trainingPartitions[model].Start <= currentRow && currentRow < trainingPartitions[model].End);
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 | private bool RowIsTestForModel(int currentRow, IRegressionModel model) {
|
---|
| 219 | return testPartitions == null || !testPartitions.ContainsKey(model) ||
|
---|
| 220 | (testPartitions[model].Start <= currentRow && currentRow < testPartitions[model].End);
|
---|
| 221 | }
|
---|
| 222 |
|
---|
[5816] | 223 | public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
[8167] | 224 | var rowsToEvaluate = rows.Except(evaluationCache.Keys);
|
---|
[8152] | 225 | var rowsEnumerator = rowsToEvaluate.GetEnumerator();
|
---|
| 226 | var valuesEnumerator = (from xs in GetEstimatedValueVectors(ProblemData.Dataset, rowsToEvaluate)
|
---|
| 227 | select AggregateEstimatedValues(xs))
|
---|
| 228 | .GetEnumerator();
|
---|
| 229 |
|
---|
| 230 | while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
|
---|
[8167] | 231 | evaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
|
---|
[8152] | 232 | }
|
---|
| 233 |
|
---|
[8167] | 234 | return rows.Select(row => evaluationCache[row]);
|
---|
[5816] | 235 | }
|
---|
| 236 |
|
---|
[12702] | 237 | public IEnumerable<IEnumerable<double>> GetEstimatedValueVectors(IDataset dataset, IEnumerable<int> rows) {
|
---|
[6982] | 238 | if (!Model.Models.Any()) yield break;
|
---|
[5816] | 239 | var estimatedValuesEnumerators = (from model in Model.Models
|
---|
| 240 | select model.GetEstimatedValues(dataset, rows).GetEnumerator())
|
---|
| 241 | .ToList();
|
---|
| 242 |
|
---|
| 243 | while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
|
---|
| 244 | yield return from enumerator in estimatedValuesEnumerators
|
---|
| 245 | select enumerator.Current;
|
---|
| 246 | }
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | private double AggregateEstimatedValues(IEnumerable<double> estimatedValues) {
|
---|
[6238] | 250 | return estimatedValues.DefaultIfEmpty(double.NaN).Average();
|
---|
[6254] | 251 | }
|
---|
[6612] | 252 | #endregion
|
---|
[6520] | 253 |
|
---|
[6666] | 254 | protected override void OnProblemDataChanged() {
|
---|
[8167] | 255 | trainingEvaluationCache.Clear();
|
---|
| 256 | testEvaluationCache.Clear();
|
---|
| 257 | evaluationCache.Clear();
|
---|
[6666] | 258 | IRegressionProblemData problemData = new RegressionProblemData(ProblemData.Dataset,
|
---|
| 259 | ProblemData.AllowedInputVariables,
|
---|
| 260 | ProblemData.TargetVariable);
|
---|
| 261 | problemData.TrainingPartition.Start = ProblemData.TrainingPartition.Start;
|
---|
| 262 | problemData.TrainingPartition.End = ProblemData.TrainingPartition.End;
|
---|
| 263 | problemData.TestPartition.Start = ProblemData.TestPartition.Start;
|
---|
| 264 | problemData.TestPartition.End = ProblemData.TestPartition.End;
|
---|
| 265 |
|
---|
| 266 | foreach (var solution in RegressionSolutions) {
|
---|
| 267 | if (solution is RegressionEnsembleSolution)
|
---|
| 268 | solution.ProblemData = ProblemData;
|
---|
| 269 | else
|
---|
| 270 | solution.ProblemData = problemData;
|
---|
| 271 | }
|
---|
| 272 | foreach (var trainingPartition in trainingPartitions.Values) {
|
---|
| 273 | trainingPartition.Start = ProblemData.TrainingPartition.Start;
|
---|
| 274 | trainingPartition.End = ProblemData.TrainingPartition.End;
|
---|
| 275 | }
|
---|
| 276 | foreach (var testPartition in testPartitions.Values) {
|
---|
| 277 | testPartition.Start = ProblemData.TestPartition.Start;
|
---|
| 278 | testPartition.End = ProblemData.TestPartition.End;
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | base.OnProblemDataChanged();
|
---|
| 282 | }
|
---|
| 283 |
|
---|
[6612] | 284 | public void AddRegressionSolutions(IEnumerable<IRegressionSolution> solutions) {
|
---|
| 285 | regressionSolutions.AddRange(solutions);
|
---|
[8152] | 286 |
|
---|
[8167] | 287 | trainingEvaluationCache.Clear();
|
---|
| 288 | testEvaluationCache.Clear();
|
---|
| 289 | evaluationCache.Clear();
|
---|
[6612] | 290 | }
|
---|
| 291 | public void RemoveRegressionSolutions(IEnumerable<IRegressionSolution> solutions) {
|
---|
| 292 | regressionSolutions.RemoveRange(solutions);
|
---|
[8152] | 293 |
|
---|
[8167] | 294 | trainingEvaluationCache.Clear();
|
---|
| 295 | testEvaluationCache.Clear();
|
---|
| 296 | evaluationCache.Clear();
|
---|
[6612] | 297 | }
|
---|
[6520] | 298 |
|
---|
[6612] | 299 | private void regressionSolutions_ItemsAdded(object sender, CollectionItemsChangedEventArgs<IRegressionSolution> e) {
|
---|
| 300 | foreach (var solution in e.Items) AddRegressionSolution(solution);
|
---|
[6520] | 301 | RecalculateResults();
|
---|
| 302 | }
|
---|
[6612] | 303 | private void regressionSolutions_ItemsRemoved(object sender, CollectionItemsChangedEventArgs<IRegressionSolution> e) {
|
---|
| 304 | foreach (var solution in e.Items) RemoveRegressionSolution(solution);
|
---|
| 305 | RecalculateResults();
|
---|
| 306 | }
|
---|
| 307 | private void regressionSolutions_CollectionReset(object sender, CollectionItemsChangedEventArgs<IRegressionSolution> e) {
|
---|
| 308 | foreach (var solution in e.OldItems) RemoveRegressionSolution(solution);
|
---|
| 309 | foreach (var solution in e.Items) AddRegressionSolution(solution);
|
---|
| 310 | RecalculateResults();
|
---|
| 311 | }
|
---|
[6520] | 312 |
|
---|
[6612] | 313 | private void AddRegressionSolution(IRegressionSolution solution) {
|
---|
| 314 | if (Model.Models.Contains(solution.Model)) throw new ArgumentException();
|
---|
| 315 | Model.Add(solution.Model);
|
---|
| 316 | trainingPartitions[solution.Model] = solution.ProblemData.TrainingPartition;
|
---|
| 317 | testPartitions[solution.Model] = solution.ProblemData.TestPartition;
|
---|
[8152] | 318 |
|
---|
[8167] | 319 | trainingEvaluationCache.Clear();
|
---|
| 320 | testEvaluationCache.Clear();
|
---|
| 321 | evaluationCache.Clear();
|
---|
[6612] | 322 | }
|
---|
[6520] | 323 |
|
---|
[6612] | 324 | private void RemoveRegressionSolution(IRegressionSolution solution) {
|
---|
| 325 | if (!Model.Models.Contains(solution.Model)) throw new ArgumentException();
|
---|
| 326 | Model.Remove(solution.Model);
|
---|
| 327 | trainingPartitions.Remove(solution.Model);
|
---|
| 328 | testPartitions.Remove(solution.Model);
|
---|
[8152] | 329 |
|
---|
[8167] | 330 | trainingEvaluationCache.Clear();
|
---|
| 331 | testEvaluationCache.Clear();
|
---|
| 332 | evaluationCache.Clear();
|
---|
[6520] | 333 | }
|
---|
[5816] | 334 | }
|
---|
| 335 | }
|
---|