1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | [StorableClass]
|
---|
31 | public abstract class ClassificationSolutionBase : DataAnalysisSolution, IClassificationSolution {
|
---|
32 | private const string TrainingAccuracyResultName = "Accuracy (training)";
|
---|
33 | private const string TestAccuracyResultName = "Accuracy (test)";
|
---|
34 | private const string TrainingNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (training)";
|
---|
35 | private const string TestNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (test)";
|
---|
36 | private const string ClassificationPerformanceMeasuresResultName = "Classification Performance Measures";
|
---|
37 |
|
---|
38 | public new IClassificationModel Model {
|
---|
39 | get { return (IClassificationModel)base.Model; }
|
---|
40 | protected set { base.Model = value; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | public new IClassificationProblemData ProblemData {
|
---|
44 | get { return (IClassificationProblemData)base.ProblemData; }
|
---|
45 | set { base.ProblemData = value; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | #region Results
|
---|
49 | public double TrainingAccuracy {
|
---|
50 | get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
|
---|
51 | private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
|
---|
52 | }
|
---|
53 | public double TestAccuracy {
|
---|
54 | get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
|
---|
55 | private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
|
---|
56 | }
|
---|
57 | public double TrainingNormalizedGiniCoefficient {
|
---|
58 | get { return ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value; }
|
---|
59 | protected set { ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value = value; }
|
---|
60 | }
|
---|
61 | public double TestNormalizedGiniCoefficient {
|
---|
62 | get { return ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value; }
|
---|
63 | protected set { ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value = value; }
|
---|
64 | }
|
---|
65 | public ClassificationPerformanceMeasuresResultCollection ClassificationPerformanceMeasures {
|
---|
66 | get { return ((ClassificationPerformanceMeasuresResultCollection)this[ClassificationPerformanceMeasuresResultName].Value); }
|
---|
67 | protected set { (this[ClassificationPerformanceMeasuresResultName].Value) = value; }
|
---|
68 | }
|
---|
69 | #endregion
|
---|
70 |
|
---|
71 | [StorableConstructor]
|
---|
72 | protected ClassificationSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
73 | protected ClassificationSolutionBase(ClassificationSolutionBase original, Cloner cloner)
|
---|
74 | : base(original, cloner) {
|
---|
75 | }
|
---|
76 | protected ClassificationSolutionBase(IClassificationModel model, IClassificationProblemData problemData)
|
---|
77 | : base(model, problemData) {
|
---|
78 | Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
79 | Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
80 | Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
|
---|
81 | Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
|
---|
82 | Add(new Result(ClassificationPerformanceMeasuresResultName, @"Classification performance measures.\n
|
---|
83 | In a multiclass classification all misclassifications of the negative class will be treated as true negatives except on positive class estimations.",
|
---|
84 | new ClassificationPerformanceMeasuresResultCollection()));
|
---|
85 | }
|
---|
86 |
|
---|
87 | [StorableHook(HookType.AfterDeserialization)]
|
---|
88 | private void AfterDeserialization() {
|
---|
89 | if (!this.ContainsKey(TrainingNormalizedGiniCoefficientResultName))
|
---|
90 | Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
|
---|
91 | if (!this.ContainsKey(TestNormalizedGiniCoefficientResultName))
|
---|
92 | Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
|
---|
93 | if (!this.ContainsKey(ClassificationPerformanceMeasuresResultName)) {
|
---|
94 | Add(new Result(ClassificationPerformanceMeasuresResultName, @"Classification performance measures.\n
|
---|
95 | In a multiclass classification all misclassifications of the negative class will be treated as true negatives except on positive class estimations.",
|
---|
96 | new ClassificationPerformanceMeasuresResultCollection()));
|
---|
97 | CalculateClassificationResults();
|
---|
98 | }
|
---|
99 | }
|
---|
100 |
|
---|
101 | protected void CalculateClassificationResults() {
|
---|
102 | double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
|
---|
103 | double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToArray();
|
---|
104 |
|
---|
105 | double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
|
---|
106 | double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToArray();
|
---|
107 |
|
---|
108 | var positiveClassName = ProblemData.PositiveClass;
|
---|
109 | double positiveClassValue = ProblemData.GetClassValue(positiveClassName);
|
---|
110 | ClassificationPerformanceMeasuresCalculator trainingPerformanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassName, positiveClassValue);
|
---|
111 | ClassificationPerformanceMeasuresCalculator testPerformanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassName, positiveClassValue);
|
---|
112 |
|
---|
113 | OnlineCalculatorError errorState;
|
---|
114 | double trainingAccuracy = OnlineAccuracyCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
|
---|
115 | if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
|
---|
116 | double testAccuracy = OnlineAccuracyCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
|
---|
117 | if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
|
---|
118 |
|
---|
119 | TrainingAccuracy = trainingAccuracy;
|
---|
120 | TestAccuracy = testAccuracy;
|
---|
121 |
|
---|
122 | double trainingNormalizedGini = NormalizedGiniCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
|
---|
123 | if (errorState != OnlineCalculatorError.None) trainingNormalizedGini = double.NaN;
|
---|
124 | double testNormalizedGini = NormalizedGiniCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
|
---|
125 | if (errorState != OnlineCalculatorError.None) testNormalizedGini = double.NaN;
|
---|
126 |
|
---|
127 | TrainingNormalizedGiniCoefficient = trainingNormalizedGini;
|
---|
128 | TestNormalizedGiniCoefficient = testNormalizedGini;
|
---|
129 |
|
---|
130 | trainingPerformanceCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues);
|
---|
131 | if (trainingPerformanceCalculator.ErrorState == OnlineCalculatorError.None)
|
---|
132 | ClassificationPerformanceMeasures.SetTrainingResults(trainingPerformanceCalculator);
|
---|
133 |
|
---|
134 | testPerformanceCalculator.Calculate(originalTestClassValues, estimatedTestClassValues);
|
---|
135 | if (testPerformanceCalculator.ErrorState == OnlineCalculatorError.None)
|
---|
136 | ClassificationPerformanceMeasures.SetTestResults(testPerformanceCalculator);
|
---|
137 | }
|
---|
138 |
|
---|
139 | public abstract IEnumerable<double> EstimatedClassValues { get; }
|
---|
140 | public abstract IEnumerable<double> EstimatedTrainingClassValues { get; }
|
---|
141 | public abstract IEnumerable<double> EstimatedTestClassValues { get; }
|
---|
142 |
|
---|
143 | public abstract IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows);
|
---|
144 |
|
---|
145 | protected override void RecalculateResults() {
|
---|
146 | CalculateClassificationResults();
|
---|
147 | }
|
---|
148 | }
|
---|
149 | }
|
---|