Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Problems.DataAnalysis.Views/3.4/FeatureCorrelation/FeatureCorrelationCalculator.cs @ 10880

Last change on this file since 10880 was 9456, checked in by swagner, 12 years ago

Updated copyright year and added some missing license headers (#1889)

File size: 10.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.ComponentModel;
25using System.Linq;
26using HeuristicLab.PluginInfrastructure;
27
28namespace HeuristicLab.Problems.DataAnalysis.Views {
29  [NonDiscoverableType]
30  public class FeatureCorrelationCalculator : Object {
31
32    private BackgroundWorker bw;
33    private BackgroundWorkerInfo bwInfo;
34
35    private IDataAnalysisProblemData problemData;
36    public IDataAnalysisProblemData ProblemData {
37      set {
38        if (bw != null) {
39          bw.CancelAsync();
40        }
41        problemData = value;
42      }
43    }
44
45    public FeatureCorrelationCalculator()
46      : base() { }
47
48    public FeatureCorrelationCalculator(IDataAnalysisProblemData problemData)
49      : base() {
50      this.problemData = problemData;
51    }
52
53    public void CalculateElements(IDependencyCalculator calc, string partition) {
54      CalculateElements(problemData.Dataset, calc, partition);
55    }
56
57    // returns true if any calculation takes place
58    public bool CalculateTimeframeElements(IDependencyCalculator calc, string partition, string variable, int frames, double[,] correlation = null) {
59      if (correlation == null || correlation.GetLength(1) <= frames) {
60        CalculateElements(problemData.Dataset, calc, partition, variable, frames, correlation);
61        return true;
62      } else {
63        return false;
64      }
65    }
66
67    public void TryCancelCalculation() {
68      if (bw != null && bw.IsBusy) {
69        bwInfo = null;
70        bw.CancelAsync();
71      }
72    }
73
74    private void CalculateElements(Dataset dataset, IDependencyCalculator calc, string partition, string variable = null, int frames = 0, double[,] alreadyCalculated = null) {
75      var indices = GetRelevantIndices(problemData, partition);
76      bwInfo = new BackgroundWorkerInfo {
77        Dataset = dataset, Calculator = calc, Partition = partition, Indices = indices,
78        Variable = variable, Frames = frames, AlreadyCalculated = alreadyCalculated
79      };
80      if (bw == null) {
81        bw = new BackgroundWorker();
82        bw.WorkerReportsProgress = true;
83        bw.WorkerSupportsCancellation = true;
84        bw.DoWork += new DoWorkEventHandler(BwDoWork);
85        bw.ProgressChanged += new ProgressChangedEventHandler(BwProgressChanged);
86        bw.RunWorkerCompleted += new RunWorkerCompletedEventHandler(BwRunWorkerCompleted);
87      }
88      if (bw.IsBusy) {
89        bw.CancelAsync();
90      } else {
91        bw.RunWorkerAsync(bwInfo);
92      }
93    }
94
95    private IEnumerable<int> GetRelevantIndices(IDataAnalysisProblemData problemData, string partition) {
96      IEnumerable<int> var;
97      if (partition.Equals(AbstractFeatureCorrelationView.TRAININGSAMPLES))
98        var = problemData.TrainingIndices;
99      else if (partition.Equals(AbstractFeatureCorrelationView.TESTSAMPLES))
100        var = problemData.TestIndices;
101      else var = Enumerable.Range(0, problemData.Dataset.Rows);
102      return var;
103    }
104
105    #region backgroundworker
106    private void BwDoWork(object sender, DoWorkEventArgs e) {
107      BackgroundWorkerInfo bwInfo = (BackgroundWorkerInfo)e.Argument;
108      if (bwInfo.Variable == null) {
109        BwCalculateCorrelation(sender, e);
110      } else {
111        BwCalculateTimeframeCorrelation(sender, e);
112      }
113    }
114
115    private void BwCalculateCorrelation(object sender, DoWorkEventArgs e) {
116      BackgroundWorker worker = sender as BackgroundWorker;
117
118      BackgroundWorkerInfo bwInfo = (BackgroundWorkerInfo)e.Argument;
119      Dataset dataset = bwInfo.Dataset;
120      IEnumerable<int> indices = bwInfo.Indices;
121      IDependencyCalculator calc = bwInfo.Calculator;
122
123      IList<string> doubleVariableNames = dataset.DoubleVariables.ToList();
124      OnlineCalculatorError error = OnlineCalculatorError.None;
125      int length = doubleVariableNames.Count;
126      double[,] elements = new double[length, length];
127      double calculations = (Math.Pow(length, 2) + length) / 2;
128
129      worker.ReportProgress(0);
130
131      for (int i = 0; i < length; i++) {
132        for (int j = 0; j < i + 1; j++) {
133          if (worker.CancellationPending) {
134            worker.ReportProgress(100);
135            e.Cancel = true;
136            return;
137          }
138          IEnumerable<double> var1 = problemData.Dataset.GetDoubleValues(doubleVariableNames[i], indices);
139          IEnumerable<double> var2 = problemData.Dataset.GetDoubleValues(doubleVariableNames[j], indices);
140
141          elements[i, j] = calc.Calculate(var1, var2, out error);
142
143          if (!error.Equals(OnlineCalculatorError.None)) {
144            elements[i, j] = double.NaN;
145          }
146          elements[j, i] = elements[i, j];
147          worker.ReportProgress((int)Math.Round((((Math.Pow(i, 2) + i) / 2 + j + 1.0) / calculations) * 100));
148        }
149      }
150      e.Result = elements;
151      worker.ReportProgress(100);
152    }
153
154    private void BwCalculateTimeframeCorrelation(object sender, DoWorkEventArgs e) {
155      BackgroundWorker worker = sender as BackgroundWorker;
156
157      BackgroundWorkerInfo bwInfo = (BackgroundWorkerInfo)e.Argument;
158      Dataset dataset = bwInfo.Dataset;
159      IEnumerable<int> indices = bwInfo.Indices;
160      IDependencyCalculator calc = bwInfo.Calculator;
161      string variable = bwInfo.Variable;
162      int frames = bwInfo.Frames;
163      double[,] alreadyCalculated = bwInfo.AlreadyCalculated;
164
165      IList<string> doubleVariableNames = dataset.DoubleVariables.ToList();
166      OnlineCalculatorError error = OnlineCalculatorError.None;
167      int length = doubleVariableNames.Count;
168      double[,] elements = new double[length, frames + 1];
169      double calculations = (frames + 1) * length;
170
171      worker.ReportProgress(0);
172
173      int start = 0;
174      if (alreadyCalculated != null) {
175        for (int i = 0; i < alreadyCalculated.GetLength(0); i++) {
176          Array.Copy(alreadyCalculated, i * alreadyCalculated.GetLength(1), elements, i * elements.GetLength(1), alreadyCalculated.GetLength(1));
177        }
178        start = alreadyCalculated.GetLength(1);
179      }
180
181      for (int i = 0; i < length; i++) {
182        for (int j = start; j <= frames; j++) {
183          if (worker.CancellationPending) {
184            worker.ReportProgress(100);
185            e.Cancel = true;
186            return;
187          }
188
189          IEnumerable<double> var1 = problemData.Dataset.GetDoubleValues(variable, indices);
190          IEnumerable<double> var2 = problemData.Dataset.GetDoubleValues(doubleVariableNames[i], indices);
191
192          var valuesInFrame = var1.Take(j);
193          var help = var1.Skip(j).ToList();
194          help.AddRange(valuesInFrame);
195          var1 = help;
196
197          elements[i, j] = calc.Calculate(var1, var2, out error);
198
199          if (!error.Equals(OnlineCalculatorError.None)) {
200            elements[i, j] = double.NaN;
201          }
202          worker.ReportProgress((int)((100.0 / calculations) * (i * (frames + 1) + j + 1)));
203        }
204      }
205      e.Result = elements;
206      worker.ReportProgress(100);
207    }
208
209    private void BwRunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) {
210      BackgroundWorker worker = sender as BackgroundWorker;
211      if (!e.Cancelled && !worker.CancellationPending) {
212        if (e.Error != null) {
213          ErrorHandling.ShowErrorDialog(e.Error);
214        } else {
215          OnCorrelationCalculationFinished((double[,])e.Result, bwInfo.Calculator, bwInfo.Partition, bwInfo.Variable);
216        }
217      } else if (bwInfo != null) {
218        bw.RunWorkerAsync(bwInfo);
219      }
220    }
221    #endregion
222
223    #region events
224    public class CorrelationCalculationFinishedArgs : EventArgs {
225      public double[,] Correlation { get; private set; }
226      public IDependencyCalculator Calculcator { get; private set; }
227      public string Partition { get; private set; }
228      public string Variable { get; private set; }
229
230      public CorrelationCalculationFinishedArgs(double[,] correlation, IDependencyCalculator calculator, string partition, string variable = null) {
231        this.Correlation = correlation;
232        this.Calculcator = calculator;
233        this.Partition = partition;
234        this.Variable = variable;
235      }
236    }
237
238    public delegate void CorrelationCalculationFinishedHandler(object sender, CorrelationCalculationFinishedArgs e);
239    public event CorrelationCalculationFinishedHandler CorrelationCalculationFinished;
240    protected virtual void OnCorrelationCalculationFinished(double[,] correlation, IDependencyCalculator calculator, string partition, string variable = null) {
241      var handler = CorrelationCalculationFinished;
242      if (handler != null)
243        handler(this, new CorrelationCalculationFinishedArgs(correlation, calculator, partition, variable));
244    }
245
246    public delegate void ProgressCalculationHandler(object sender, ProgressChangedEventArgs e);
247    public event ProgressCalculationHandler ProgressCalculation;
248    protected void BwProgressChanged(object sender, ProgressChangedEventArgs e) {
249      BackgroundWorker worker = sender as BackgroundWorker;
250      if (ProgressCalculation != null) {
251        ProgressCalculation(sender, e);
252      }
253    }
254    #endregion
255
256    private class BackgroundWorkerInfo {
257      public Dataset Dataset { get; set; }
258      public IDependencyCalculator Calculator { get; set; }
259      public string Partition { get; set; }
260      public IEnumerable<int> Indices { get; set; }
261      public string Variable { get; set; }
262      public int Frames { get; set; }
263      public double[,] AlreadyCalculated { get; set; }
264    }
265  }
266}
Note: See TracBrowser for help on using the repository browser.