Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Problems.DataAnalysis.Views/3.4/Controls/PartialDependencePlot.cs @ 16189

Last change on this file since 16189 was 16162, checked in by gkronber, 6 years ago

#2888: merged r15839,r15845 from trunk to stable

File size: 27.5 KB
RevLine 
[13780]1#region License Information
2/* HeuristicLab
[15584]3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[13780]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
[14826]23using System.Collections;
[13780]24using System.Collections.Generic;
[13836]25using System.Drawing;
[13817]26using System.Globalization;
[13780]27using System.Linq;
[13840]28using System.Threading;
[13837]29using System.Threading.Tasks;
[13780]30using System.Windows.Forms;
31using System.Windows.Forms.DataVisualization.Charting;
32using HeuristicLab.Common;
[13836]33using HeuristicLab.MainForm.WindowsForms;
[13780]34using HeuristicLab.Visualization.ChartControlsExtensions;
35
36namespace HeuristicLab.Problems.DataAnalysis.Views {
[14852]37  public partial class PartialDependencePlot : UserControl, IPartialDependencePlot {
[13831]38    private ModifiableDataset sharedFixedVariables; // used for syncronising variable values between charts
[13837]39    private ModifiableDataset internalDataset; // holds the x values for each point drawn
[13780]40
[13842]41    private CancellationTokenSource cancelCurrentRecalculateSource;
[13840]42
[13842]43    private readonly List<IRegressionSolution> solutions;
44    private readonly Dictionary<IRegressionSolution, Series> seriesCache;
45    private readonly Dictionary<IRegressionSolution, Series> ciSeriesCache;
46
[13853]47    private readonly ToolStripMenuItem configToolStripMenuItem;
[14852]48    private readonly PartialDependencePlotConfigurationDialog configurationDialog;
[13853]49
[13842]50    #region Properties
[14014]51    public string XAxisTitle {
52      get { return chart.ChartAreas[0].AxisX.Title; }
53      set { chart.ChartAreas[0].AxisX.Title = value; }
54    }
55
56    public string YAxisTitle {
57      get { return chart.ChartAreas[0].AxisY.Title; }
58      set { chart.ChartAreas[0].AxisY.Title = value; }
59    }
60
[13831]61    public bool ShowLegend {
62      get { return chart.Legends[0].Enabled; }
63      set { chart.Legends[0].Enabled = value; }
[13780]64    }
[13831]65    public bool ShowCursor {
66      get { return chart.Annotations[0].Visible; }
[13853]67      set {
68        chart.Annotations[0].Visible = value;
[14131]69        if (!value) chart.Titles[0].Text = string.Empty;
[13853]70      }
[13831]71    }
[13780]72
[13855]73    public bool ShowConfigButton {
74      get { return configurationButton.Visible; }
75      set { configurationButton.Visible = value; }
76    }
77
[13831]78    private int xAxisTicks = 5;
79    public int XAxisTicks {
80      get { return xAxisTicks; }
[13843]81      set {
82        if (value != xAxisTicks) {
83          xAxisTicks = value;
[15239]84          SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
[13843]85          RecalculateInternalDataset();
86        }
87      }
[13780]88    }
[13842]89    private double? fixedXAxisMin;
90    public double? FixedXAxisMin {
91      get { return fixedXAxisMin; }
92      set {
93        if ((value.HasValue && fixedXAxisMin.HasValue && !value.Value.IsAlmost(fixedXAxisMin.Value)) || (value.HasValue != fixedXAxisMin.HasValue)) {
94          fixedXAxisMin = value;
[15239]95          SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
96          RecalculateInternalDataset();
97          // set the vertical line position
98          if (VerticalLineAnnotation.X <= fixedXAxisMin) {
99            var axisX = chart.ChartAreas[0].AxisX;
100            var step = (axisX.Maximum - axisX.Minimum) / drawingSteps;
101            VerticalLineAnnotation.X = axisX.Minimum + step;
[14006]102          }
[13842]103        }
104      }
105    }
106    private double? fixedXAxisMax;
107    public double? FixedXAxisMax {
108      get { return fixedXAxisMax; }
109      set {
110        if ((value.HasValue && fixedXAxisMax.HasValue && !value.Value.IsAlmost(fixedXAxisMax.Value)) || (value.HasValue != fixedXAxisMax.HasValue)) {
111          fixedXAxisMax = value;
[15239]112          SetupAxis(chart, chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax);
113          RecalculateInternalDataset();
114          // set the vertical line position
115          if (VerticalLineAnnotation.X >= fixedXAxisMax) {
116            var axisX = chart.ChartAreas[0].AxisX;
117            var step = (axisX.Maximum - axisX.Minimum) / drawingSteps;
118            VerticalLineAnnotation.X = axisX.Maximum - step;
[14006]119          }
[13842]120        }
121      }
122    }
123
[13831]124    private int yAxisTicks = 5;
[13842]125    public int YAxisTicks {
[13831]126      get { return yAxisTicks; }
[13843]127      set {
128        if (value != yAxisTicks) {
129          yAxisTicks = value;
[15239]130          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
[13843]131          RecalculateInternalDataset();
132        }
133      }
[13831]134    }
[13842]135    private double? fixedYAxisMin;
136    public double? FixedYAxisMin {
137      get { return fixedYAxisMin; }
138      set {
139        if ((value.HasValue && fixedYAxisMin.HasValue && !value.Value.IsAlmost(fixedYAxisMin.Value)) || (value.HasValue != fixedYAxisMin.HasValue)) {
140          fixedYAxisMin = value;
[15239]141          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
[13842]142        }
143      }
144    }
145    private double? fixedYAxisMax;
146    public double? FixedYAxisMax {
147      get { return fixedYAxisMax; }
148      set {
149        if ((value.HasValue && fixedYAxisMax.HasValue && !value.Value.IsAlmost(fixedYAxisMax.Value)) || (value.HasValue != fixedYAxisMax.HasValue)) {
150          fixedYAxisMax = value;
[15239]151          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
[13842]152        }
153      }
154    }
[13780]155
[15239]156    private double trainingMin = -1;
157    private double trainingMax = 1;
[13780]158
[13831]159    private int drawingSteps = 1000;
160    public int DrawingSteps {
161      get { return drawingSteps; }
[13842]162      set {
163        if (value != drawingSteps) {
164          drawingSteps = value;
165          RecalculateInternalDataset();
166          ResizeAllSeriesData();
167        }
168      }
[13780]169    }
170
[13831]171    private string freeVariable;
172    public string FreeVariable {
173      get { return freeVariable; }
[13780]174      set {
[13831]175        if (value == freeVariable) return;
176        if (solutions.Any(s => !s.ProblemData.Dataset.DoubleVariables.Contains(value))) {
177          throw new ArgumentException("Variable does not exist in the ProblemData of the Solutions.");
178        }
179        freeVariable = value;
180        RecalculateInternalDataset();
[13780]181      }
182    }
183
[13843]184    private double yMin;
185    public double YMin {
186      get { return yMin; }
187    }
188    private double yMax;
189    public double YMax {
190      get { return yMax; }
191    }
192
[14089]193    public bool IsZoomed {
194      get { return chart.ChartAreas[0].AxisX.ScaleView.IsZoomed; }
195    }
196
[13831]197    private VerticalLineAnnotation VerticalLineAnnotation {
198      get { return (VerticalLineAnnotation)chart.Annotations.SingleOrDefault(x => x is VerticalLineAnnotation); }
[13780]199    }
[13850]200
201    internal ElementPosition InnerPlotPosition {
202      get { return chart.ChartAreas[0].InnerPlotPosition; }
203    }
[13842]204    #endregion
[13780]205
[14158]206    public event EventHandler ChartPostPaint;
207
[14852]208    public PartialDependencePlot() {
[13780]209      InitializeComponent();
[13836]210
[13842]211      solutions = new List<IRegressionSolution>();
212      seriesCache = new Dictionary<IRegressionSolution, Series>();
213      ciSeriesCache = new Dictionary<IRegressionSolution, Series>();
214
[13836]215      // Configure axis
216      chart.CustomizeAllChartAreas();
[16162]217      chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = false;
218      chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = false;
[13836]219
[16162]220      chart.ChartAreas[0].Axes.ToList().ForEach(x => { x.ScaleView.Zoomable = false; });
[13840]221
[13853]222      configToolStripMenuItem = new ToolStripMenuItem("Configuration");
[13855]223      configToolStripMenuItem.Click += config_Click;
[13853]224      chart.ContextMenuStrip.Items.Add(new ToolStripSeparator());
225      chart.ContextMenuStrip.Items.Add(configToolStripMenuItem);
[14852]226      configurationDialog = new PartialDependencePlotConfigurationDialog(this);
[13853]227
[14852]228      Disposed += Control_Disposed;
[13780]229    }
[13853]230
[14852]231    private void Control_Disposed(object sender, EventArgs e) {
[13843]232      if (cancelCurrentRecalculateSource != null)
233        cancelCurrentRecalculateSource.Cancel();
[13840]234    }
235
[13842]236    public void Configure(IEnumerable<IRegressionSolution> solutions, ModifiableDataset sharedFixedVariables, string freeVariable, int drawingSteps, bool initializeAxisRanges = true) {
[13831]237      if (!SolutionsCompatible(solutions))
238        throw new ArgumentException("Solutions are not compatible with the problem data.");
239      this.freeVariable = freeVariable;
240      this.drawingSteps = drawingSteps;
[13780]241
[13842]242      this.solutions.Clear();
243      this.solutions.AddRange(solutions);
244
[13831]245      // add an event such that whenever a value is changed in the shared dataset,
246      // this change is reflected in the internal dataset (where the value becomes a whole column)
247      if (this.sharedFixedVariables != null)
248        this.sharedFixedVariables.ItemChanged -= sharedFixedVariables_ItemChanged;
249      this.sharedFixedVariables = sharedFixedVariables;
250      this.sharedFixedVariables.ItemChanged += sharedFixedVariables_ItemChanged;
[13780]251
[13842]252      RecalculateTrainingLimits(initializeAxisRanges);
[13831]253      RecalculateInternalDataset();
[13842]254
255      chart.Series.Clear();
256      seriesCache.Clear();
257      ciSeriesCache.Clear();
258      foreach (var solution in this.solutions) {
259        var series = CreateSeries(solution);
260        seriesCache.Add(solution, series.Item1);
261        if (series.Item2 != null)
262          ciSeriesCache.Add(solution, series.Item2);
263      }
264
[14118]265      // Set cursor and x-axis
266      // Make sure to allow a small offset to be able to distinguish the vertical line annotation from the axis
267      var defaultValue = sharedFixedVariables.GetDoubleValue(freeVariable, 0);
268      var step = (trainingMax - trainingMin) / drawingSteps;
269      var minimum = chart.ChartAreas[0].AxisX.Minimum;
270      var maximum = chart.ChartAreas[0].AxisX.Maximum;
271      if (defaultValue <= minimum)
272        VerticalLineAnnotation.X = minimum + step;
273      else if (defaultValue >= maximum)
274        VerticalLineAnnotation.X = maximum - step;
275      else
276        VerticalLineAnnotation.X = defaultValue;
277
278      if (ShowCursor)
[14267]279        chart.Titles[0].Text = FreeVariable + " : " + defaultValue.ToString("G5", CultureInfo.CurrentCulture);
[14118]280
[13842]281      ResizeAllSeriesData();
282      OrderAndColorSeries();
[13780]283    }
284
[13843]285    public async Task RecalculateAsync(bool updateOnFinish = true, bool resetYAxis = true) {
[13842]286      if (IsDisposed
287        || sharedFixedVariables == null || !solutions.Any() || string.IsNullOrEmpty(freeVariable)
[15239]288        || trainingMin > trainingMax || drawingSteps == 0)
[13842]289        return;
[13829]290
[13853]291      calculationPendingTimer.Start();
292
[13842]293      // cancel previous recalculate call
294      if (cancelCurrentRecalculateSource != null)
295        cancelCurrentRecalculateSource.Cancel();
296      cancelCurrentRecalculateSource = new CancellationTokenSource();
[14118]297      var cancellationToken = cancelCurrentRecalculateSource.Token;
[13842]298
299      // Update series
300      try {
[13843]301        var limits = await UpdateAllSeriesDataAsync(cancellationToken);
[15239]302        chart.Invalidate();
[13842]303
[13843]304        yMin = limits.Lower;
305        yMax = limits.Upper;
[13842]306        // Set y-axis
[13843]307        if (resetYAxis)
[15239]308          SetupAxis(chart, chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax);
[13842]309
310        UpdateOutOfTrainingRangeStripLines();
311
[13853]312        calculationPendingTimer.Stop();
313        calculationPendingLabel.Visible = false;
[13843]314        if (updateOnFinish)
315          Update();
[15239]316      }
317      catch (OperationCanceledException) { }
318      catch (AggregateException ae) {
[13842]319        if (!ae.InnerExceptions.Any(e => e is OperationCanceledException))
320          throw;
321      }
[13831]322    }
323
[14131]324    public void UpdateTitlePosition() {
325      var title = chart.Titles[0];
326      var plotArea = InnerPlotPosition;
327
328      title.Visible = plotArea.Width != 0;
329
330      title.Position.X = plotArea.X + (plotArea.Width / 2);
331    }
332
[15239]333    private static void SetupAxis(EnhancedChart chart, Axis axis, double minValue, double maxValue, int ticks, double? fixedAxisMin, double? fixedAxisMax) {
334      //guard if only one distinct value is present
335      if (minValue.IsAlmost(maxValue)) {
336        minValue = minValue - 0.5;
337        maxValue = minValue + 0.5;
[14157]338      }
[13843]339
[15239]340      double axisMin, axisMax, axisInterval;
341      ChartUtil.CalculateAxisInterval(minValue, maxValue, ticks, out axisMin, out axisMax, out axisInterval);
342      axis.Minimum = fixedAxisMin ?? axisMin;
343      axis.Maximum = fixedAxisMax ?? axisMax;
344      axis.Interval = (axis.Maximum - axis.Minimum) / ticks;
345
346      chart.ChartAreas[0].RecalculateAxesScale();
[13842]347    }
348
349    private void RecalculateTrainingLimits(bool initializeAxisRanges) {
[16162]350      trainingMin = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Where(x => !double.IsNaN(x)).Min()).Max();
351      trainingMax = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Where(x => !double.IsNaN(x)).Max()).Min();
[13842]352
353      if (initializeAxisRanges) {
354        double xmin, xmax, xinterval;
[15239]355        //guard if only one distinct value is present
356        if (trainingMin.IsAlmost(trainingMax))
357          ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMax + 0.5, XAxisTicks, out xmin, out xmax, out xinterval);
358        else
359          ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
360
[13842]361        FixedXAxisMin = xmin;
362        FixedXAxisMax = xmax;
363      }
364    }
365
[13831]366    private void RecalculateInternalDataset() {
[13843]367      if (sharedFixedVariables == null)
368        return;
369
[13831]370      // we expand the range in order to get nice tick intervals on the x axis
[13829]371      double xmin, xmax, xinterval;
[15239]372      //guard if only one distinct value is present
373      if (trainingMin.IsAlmost(trainingMax))
374        ChartUtil.CalculateAxisInterval(trainingMin - 0.5, trainingMin + 0.5, XAxisTicks, out xmin, out xmax, out xinterval);
375      else
376        ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
[13842]377
378      if (FixedXAxisMin.HasValue) xmin = FixedXAxisMin.Value;
379      if (FixedXAxisMax.HasValue) xmax = FixedXAxisMax.Value;
[13831]380      double step = (xmax - xmin) / drawingSteps;
381
[13829]382      var xvalues = new List<double>();
[13831]383      for (int i = 0; i < drawingSteps; i++)
384        xvalues.Add(xmin + i * step);
385
[14826]386      if (sharedFixedVariables == null)
387        return;
388
389      var variables = sharedFixedVariables.VariableNames.ToList();
390      var values = new List<IList>();
391      foreach (var varName in variables) {
392        if (varName == FreeVariable) {
393          values.Add(xvalues);
394        } else if (sharedFixedVariables.VariableHasType<double>(varName)) {
395          values.Add(Enumerable.Repeat(sharedFixedVariables.GetDoubleValue(varName, 0), xvalues.Count).ToList());
396        } else if (sharedFixedVariables.VariableHasType<string>(varName)) {
397          values.Add(Enumerable.Repeat(sharedFixedVariables.GetStringValue(varName, 0), xvalues.Count).ToList());
398        }
399      }
400
401      internalDataset = new ModifiableDataset(variables, values);
[13808]402    }
403
[13842]404    private Tuple<Series, Series> CreateSeries(IRegressionSolution solution) {
405      var series = new Series {
406        ChartType = SeriesChartType.Line,
407        Name = solution.ProblemData.TargetVariable + " " + solutions.IndexOf(solution)
408      };
409      series.LegendText = series.Name;
[13837]410
[14099]411      var confidenceBoundSolution = solution as IConfidenceRegressionSolution;
[13842]412      Series confidenceIntervalSeries = null;
413      if (confidenceBoundSolution != null) {
414        confidenceIntervalSeries = new Series {
415          ChartType = SeriesChartType.Range,
416          YValuesPerPoint = 2,
417          Name = "95% Conf. Interval " + series.Name,
418          IsVisibleInLegend = false
419        };
[13836]420      }
[13842]421      return Tuple.Create(series, confidenceIntervalSeries);
422    }
[13836]423
[13842]424    private void OrderAndColorSeries() {
[13836]425      chart.SuspendRepaint();
[13842]426
[13836]427      chart.Series.Clear();
428      // Add mean series for applying palette colors
[13842]429      foreach (var solution in solutions) {
430        chart.Series.Add(seriesCache[solution]);
[13780]431      }
[13842]432
[13836]433      chart.Palette = ChartColorPalette.BrightPastel;
434      chart.ApplyPaletteColors();
435      chart.Palette = ChartColorPalette.None;
436
[13842]437      // Add confidence interval series before its coresponding series for correct z index
438      foreach (var solution in solutions) {
439        Series ciSeries;
440        if (ciSeriesCache.TryGetValue(solution, out ciSeries)) {
441          var series = seriesCache[solution];
[13995]442          ciSeries.Color = Color.FromArgb(40, series.Color);
[13842]443          int idx = chart.Series.IndexOf(seriesCache[solution]);
444          chart.Series.Insert(idx, ciSeries);
445        }
[13836]446      }
[13842]447
[13836]448      chart.ResumeRepaint(true);
[13842]449    }
[13836]450
[13843]451    private async Task<DoubleLimit> UpdateAllSeriesDataAsync(CancellationToken cancellationToken) {
452      var updateTasks = solutions.Select(solution => UpdateSeriesDataAsync(solution, cancellationToken));
453
454      double min = double.MaxValue, max = double.MinValue;
455      foreach (var update in updateTasks) {
456        var limit = await update;
457        if (limit.Lower < min) min = limit.Lower;
458        if (limit.Upper > max) max = limit.Upper;
459      }
460
461      return new DoubleLimit(min, max);
462    }
463
464    private Task<DoubleLimit> UpdateSeriesDataAsync(IRegressionSolution solution, CancellationToken cancellationToken) {
[13842]465      return Task.Run(() => {
[13843]466        var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
467        var yvalues = solution.Model.GetEstimatedValues(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
[13836]468
[13843]469        double min = double.MaxValue, max = double.MinValue;
[13820]470
[13843]471        var series = seriesCache[solution];
472        for (int i = 0; i < xvalues.Count; i++) {
473          series.Points[i].SetValueXY(xvalues[i], yvalues[i]);
474          if (yvalues[i] < min) min = yvalues[i];
475          if (yvalues[i] > max) max = yvalues[i];
476        }
[13820]477
[14118]478        cancellationToken.ThrowIfCancellationRequested();
479
[14099]480        var confidenceBoundSolution = solution as IConfidenceRegressionSolution;
[13843]481        if (confidenceBoundSolution != null) {
482          var confidenceIntervalSeries = ciSeriesCache[solution];
[14118]483          var variances = confidenceBoundSolution.Model.GetEstimatedVariances(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
[13843]484          for (int i = 0; i < xvalues.Count; i++) {
485            var lower = yvalues[i] - 1.96 * Math.Sqrt(variances[i]);
486            var upper = yvalues[i] + 1.96 * Math.Sqrt(variances[i]);
487            confidenceIntervalSeries.Points[i].SetValueXY(xvalues[i], lower, upper);
488            if (lower < min) min = lower;
489            if (upper > max) max = upper;
[13842]490          }
[13843]491        }
492
493        cancellationToken.ThrowIfCancellationRequested();
494        return new DoubleLimit(min, max);
[13842]495      }, cancellationToken);
496    }
[13840]497
[13842]498    private void ResizeAllSeriesData() {
[13843]499      if (internalDataset == null)
500        return;
501
[13842]502      var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
503      foreach (var solution in solutions)
504        ResizeSeriesData(solution, xvalues);
[13780]505    }
[13842]506    private void ResizeSeriesData(IRegressionSolution solution, IList<double> xvalues = null) {
507      if (xvalues == null)
508        xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
[13780]509
[13842]510      var series = seriesCache[solution];
511      series.Points.SuspendUpdates();
[13853]512      series.Points.Clear();
[13842]513      for (int i = 0; i < xvalues.Count; i++)
514        series.Points.Add(new DataPoint(xvalues[i], 0.0));
515      series.Points.ResumeUpdates();
[13780]516
[13842]517      Series confidenceIntervalSeries;
518      if (ciSeriesCache.TryGetValue(solution, out confidenceIntervalSeries)) {
519        confidenceIntervalSeries.Points.SuspendUpdates();
[13853]520        confidenceIntervalSeries.Points.Clear();
[13842]521        for (int i = 0; i < xvalues.Count; i++)
522          confidenceIntervalSeries.Points.Add(new DataPoint(xvalues[i], new[] { -1.0, 1.0 }));
523        confidenceIntervalSeries.Points.ResumeUpdates();
524      }
[13780]525    }
526
[13842]527    public async Task AddSolutionAsync(IRegressionSolution solution) {
[13831]528      if (!SolutionsCompatible(solutions.Concat(new[] { solution })))
529        throw new ArgumentException("The solution is not compatible with the problem data.");
[13842]530      if (solutions.Contains(solution))
531        return;
532
[13831]533      solutions.Add(solution);
[13842]534      RecalculateTrainingLimits(true);
535
536      var series = CreateSeries(solution);
537      seriesCache.Add(solution, series.Item1);
538      if (series.Item2 != null)
539        ciSeriesCache.Add(solution, series.Item2);
540
541      ResizeSeriesData(solution);
542      OrderAndColorSeries();
543
544      await RecalculateAsync();
[13995]545      var args = new EventArgs<IRegressionSolution>(solution);
546      OnSolutionAdded(this, args);
[13780]547    }
[13995]548
[13842]549    public async Task RemoveSolutionAsync(IRegressionSolution solution) {
550      if (!solutions.Remove(solution))
551        return;
552
553      RecalculateTrainingLimits(true);
554
555      seriesCache.Remove(solution);
556      ciSeriesCache.Remove(solution);
557
558      await RecalculateAsync();
[13995]559      var args = new EventArgs<IRegressionSolution>(solution);
560      OnSolutionRemoved(this, args);
[13831]561    }
[13780]562
[13831]563    private static bool SolutionsCompatible(IEnumerable<IRegressionSolution> solutions) {
[14826]564      var refSolution = solutions.First();
565      var refSolVars = refSolution.ProblemData.Dataset.VariableNames;
566      foreach (var solution in solutions.Skip(1)) {
567        var variables1 = solution.ProblemData.Dataset.VariableNames;
568        if (!variables1.All(refSolVars.Contains))
569          return false;
570
571        foreach (var factorVar in variables1.Where(solution.ProblemData.Dataset.VariableHasType<string>)) {
572          var distinctVals = refSolution.ProblemData.Dataset.GetStringValues(factorVar).Distinct();
573          if (solution.ProblemData.Dataset.GetStringValues(factorVar).Any(val => !distinctVals.Contains(val))) return false;
[13831]574        }
575      }
576      return true;
[13780]577    }
578
[13842]579    private void UpdateOutOfTrainingRangeStripLines() {
[13831]580      var axisX = chart.ChartAreas[0].AxisX;
581      var lowerStripLine = axisX.StripLines[0];
582      var upperStripLine = axisX.StripLines[1];
583
584      lowerStripLine.IntervalOffset = axisX.Minimum;
[14006]585      lowerStripLine.StripWidth = Math.Abs(trainingMin - axisX.Minimum);
[13831]586
587      upperStripLine.IntervalOffset = trainingMax;
[14006]588      upperStripLine.StripWidth = Math.Abs(axisX.Maximum - trainingMax);
[13780]589    }
590
[13842]591    #region Events
[13995]592    public event EventHandler<EventArgs<IRegressionSolution>> SolutionAdded;
593    public void OnSolutionAdded(object sender, EventArgs<IRegressionSolution> args) {
594      var added = SolutionAdded;
595      if (added == null) return;
596      added(sender, args);
597    }
598
599    public event EventHandler<EventArgs<IRegressionSolution>> SolutionRemoved;
600    public void OnSolutionRemoved(object sender, EventArgs<IRegressionSolution> args) {
601      var removed = SolutionRemoved;
602      if (removed == null) return;
603      removed(sender, args);
604    }
605
[13817]606    public event EventHandler VariableValueChanged;
607    public void OnVariableValueChanged(object sender, EventArgs args) {
608      var changed = VariableValueChanged;
609      if (changed == null) return;
610      changed(sender, args);
611    }
612
[14089]613    public event EventHandler ZoomChanged;
614    public void OnZoomChanged(object sender, EventArgs args) {
615      var changed = ZoomChanged;
616      if (changed == null) return;
617      changed(sender, args);
618    }
619
[13842]620    private void sharedFixedVariables_ItemChanged(object o, EventArgs<int, int> e) {
621      if (o != sharedFixedVariables) return;
[14826]622      var variables = sharedFixedVariables.VariableNames.ToList();
[13842]623      var rowIndex = e.Value;
624      var columnIndex = e.Value2;
[13831]625
[13842]626      var variableName = variables[columnIndex];
627      if (variableName == FreeVariable) return;
[14826]628      if (internalDataset.VariableHasType<double>(variableName)) {
629        var v = sharedFixedVariables.GetDoubleValue(variableName, rowIndex);
630        var values = new List<double>(Enumerable.Repeat(v, internalDataset.Rows));
631        internalDataset.ReplaceVariable(variableName, values);
632      } else if (internalDataset.VariableHasType<string>(variableName)) {
633        var v = sharedFixedVariables.GetStringValue(variableName, rowIndex);
634        var values = new List<String>(Enumerable.Repeat(v, internalDataset.Rows));
635        internalDataset.ReplaceVariable(variableName, values);
636      } else {
637        // unsupported type
638        throw new NotSupportedException();
639      }
[13780]640    }
641
[13818]642    private void chart_AnnotationPositionChanging(object sender, AnnotationPositionChangingEventArgs e) {
[13840]643      var step = (trainingMax - trainingMin) / drawingSteps;
[13846]644      double newLocation = step * (long)Math.Round(e.NewLocationX / step);
[13840]645      var axisX = chart.ChartAreas[0].AxisX;
[13995]646      if (newLocation >= axisX.Maximum)
647        newLocation = axisX.Maximum - step;
648      if (newLocation <= axisX.Minimum)
649        newLocation = axisX.Minimum + step;
[13831]650
[13846]651      e.NewLocationX = newLocation;
[14118]652
653      UpdateCursor();
654    }
655    private void chart_AnnotationPositionChanged(object sender, EventArgs e) {
656      UpdateCursor();
657    }
[14826]658    private void UpdateCursor() {
[14118]659      var x = VerticalLineAnnotation.X;
[13831]660      sharedFixedVariables.SetVariableValue(x, FreeVariable, 0);
661
[13853]662      if (ShowCursor) {
[14267]663        chart.Titles[0].Text = FreeVariable + " : " + x.ToString("G5", CultureInfo.CurrentCulture);
[13853]664        chart.Update();
665      }
[13831]666
[13853]667      OnVariableValueChanged(this, EventArgs.Empty);
[13818]668    }
669
[13780]670    private void chart_MouseMove(object sender, MouseEventArgs e) {
[13842]671      bool hitCursor = chart.HitTest(e.X, e.Y).ChartElementType == ChartElementType.Annotation;
672      chart.Cursor = hitCursor ? Cursors.VSplit : Cursors.Default;
[13780]673    }
674
[14131]675    private async void chart_DragDrop(object sender, DragEventArgs e) {
[13780]676      var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
677      if (data != null) {
678        var solution = data as IRegressionSolution;
[13842]679        if (!solutions.Contains(solution))
[14131]680          await AddSolutionAsync(solution);
[13780]681      }
682    }
[13842]683    private void chart_DragEnter(object sender, DragEventArgs e) {
[13780]684      if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
685      e.Effect = DragDropEffects.None;
686
687      var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
688      var regressionSolution = data as IRegressionSolution;
689      if (regressionSolution != null) {
690        e.Effect = DragDropEffects.Copy;
691      }
692    }
[13853]693
694    private void calculationPendingTimer_Tick(object sender, EventArgs e) {
695      calculationPendingLabel.Visible = true;
696      Update();
697    }
698
[13855]699    private void config_Click(object sender, EventArgs e) {
[13853]700      configurationDialog.ShowDialog(this);
701    }
[14089]702
703    private void chart_SelectionRangeChanged(object sender, CursorEventArgs e) {
704      OnZoomChanged(this, EventArgs.Empty);
705    }
[14131]706
707    private void chart_Resize(object sender, EventArgs e) {
708      UpdateTitlePosition();
709    }
[14158]710
711    private void chart_PostPaint(object sender, ChartPaintEventArgs e) {
712      if (ChartPostPaint != null)
713        ChartPostPaint(this, EventArgs.Empty);
714    }
[13817]715    #endregion
[13780]716  }
717}
[14131]718
Note: See TracBrowser for help on using the repository browser.