[7476] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7476] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[7481] | 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[12706] | 29 | using HeuristicLab.Random;
|
---|
[7476] | 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
[7495] | 32 | [Item("ContextAwareCrossover", "An operator which deterministically choses the best insertion point for a randomly selected node:\n" +
|
---|
| 33 | "- Take two parent individuals P0 and P1\n" +
|
---|
| 34 | "- Randomly choose a node N from P1\n" +
|
---|
| 35 | "- Test all crossover points from P0 to determine the best location for N to be inserted")]
|
---|
[13636] | 36 | [StorableClass]
|
---|
[7476] | 37 | public sealed class SymbolicDataAnalysisExpressionContextAwareCrossover<T> : SymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData {
|
---|
| 38 | [StorableConstructor]
|
---|
| 39 | private SymbolicDataAnalysisExpressionContextAwareCrossover(bool deserializing) : base(deserializing) { }
|
---|
| 40 | private SymbolicDataAnalysisExpressionContextAwareCrossover(SymbolicDataAnalysisExpressionCrossover<T> original, Cloner cloner)
|
---|
| 41 | : base(original, cloner) {
|
---|
| 42 | }
|
---|
| 43 | public SymbolicDataAnalysisExpressionContextAwareCrossover()
|
---|
| 44 | : base() {
|
---|
[7521] | 45 | name = "ContextAwareCrossover";
|
---|
[7476] | 46 | }
|
---|
| 47 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 48 | return new SymbolicDataAnalysisExpressionContextAwareCrossover<T>(this, cloner);
|
---|
| 49 | }
|
---|
[7481] | 50 | public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
|
---|
[7476] | 51 | if (this.ExecutionContext == null)
|
---|
| 52 | throw new InvalidOperationException("ExecutionContext not set.");
|
---|
| 53 | List<int> rows = GenerateRowsToEvaluate().ToList();
|
---|
| 54 | T problemData = ProblemDataParameter.ActualValue;
|
---|
| 55 | ISymbolicDataAnalysisSingleObjectiveEvaluator<T> evaluator = EvaluatorParameter.ActualValue;
|
---|
| 56 |
|
---|
| 57 | return Cross(random, parent0, parent1, this.ExecutionContext, evaluator, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | /// <summary>
|
---|
| 61 | /// Takes two parent individuals P0 and P1.
|
---|
| 62 | /// Randomly choose a node i from the second parent, then test all possible crossover points from the first parent to determine the best location for i to be inserted.
|
---|
| 63 | /// </summary>
|
---|
| 64 | public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, IExecutionContext context,
|
---|
| 65 | ISymbolicDataAnalysisSingleObjectiveEvaluator<T> evaluator, T problemData, List<int> rows, int maxDepth, int maxLength) {
|
---|
| 66 | // randomly choose a node from the second parent
|
---|
| 67 | var possibleChildren = new List<ISymbolicExpressionTreeNode>();
|
---|
| 68 | parent1.Root.ForEachNodePostfix((n) => {
|
---|
[7495] | 69 | if (n.Parent != null && n.Parent != parent1.Root)
|
---|
| 70 | possibleChildren.Add(n);
|
---|
[7476] | 71 | });
|
---|
[12706] | 72 |
|
---|
| 73 | var selectedChild = possibleChildren.SampleRandom(random);
|
---|
[7476] | 74 | var crossoverPoints = new List<CutPoint>();
|
---|
| 75 | var qualities = new List<Tuple<CutPoint, double>>();
|
---|
| 76 |
|
---|
| 77 | parent0.Root.ForEachNodePostfix((n) => {
|
---|
[7495] | 78 | if (n.Parent != null && n.Parent != parent0.Root) {
|
---|
| 79 | var totalDepth = parent0.Root.GetBranchLevel(n) + selectedChild.GetDepth();
|
---|
| 80 | var totalLength = parent0.Root.GetLength() - n.GetLength() + selectedChild.GetLength();
|
---|
| 81 | if (totalDepth <= maxDepth && totalLength <= maxLength) {
|
---|
| 82 | var crossoverPoint = new CutPoint(n.Parent, n);
|
---|
| 83 | if (crossoverPoint.IsMatchingPointType(selectedChild))
|
---|
| 84 | crossoverPoints.Add(crossoverPoint);
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
[7476] | 87 | });
|
---|
| 88 |
|
---|
| 89 | if (crossoverPoints.Any()) {
|
---|
| 90 | // this loop will perform two swap operations per each crossover point
|
---|
| 91 | foreach (var crossoverPoint in crossoverPoints) {
|
---|
| 92 | // save the old parent so we can restore it later
|
---|
| 93 | var parent = selectedChild.Parent;
|
---|
| 94 | // perform a swap and check the quality of the solution
|
---|
[7495] | 95 | Swap(crossoverPoint, selectedChild);
|
---|
[7506] | 96 | IExecutionContext childContext = new ExecutionContext(context, evaluator, context.Scope);
|
---|
| 97 | double quality = evaluator.Evaluate(childContext, parent0, problemData, rows);
|
---|
[7476] | 98 | qualities.Add(new Tuple<CutPoint, double>(crossoverPoint, quality));
|
---|
| 99 | // restore the correct parent
|
---|
| 100 | selectedChild.Parent = parent;
|
---|
| 101 | // swap the replaced subtree back into the tree so that the structure is preserved
|
---|
[7495] | 102 | Swap(crossoverPoint, crossoverPoint.Child);
|
---|
[7476] | 103 | }
|
---|
| 104 |
|
---|
| 105 | qualities.Sort((a, b) => a.Item2.CompareTo(b.Item2)); // assuming this sorts the list in ascending order
|
---|
| 106 | var crossoverPoint0 = evaluator.Maximization ? qualities.Last().Item1 : qualities.First().Item1;
|
---|
| 107 | // swap the node that would create the best offspring
|
---|
| 108 | // this last swap makes a total of (2 * crossoverPoints.Count() + 1) swap operations.
|
---|
[7495] | 109 | Swap(crossoverPoint0, selectedChild);
|
---|
[7476] | 110 | }
|
---|
| 111 |
|
---|
| 112 | return parent0;
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 | }
|
---|