Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Analyzers/SymbolicDataAnalysisSingleObjectiveValidationAnalyzer.cs @ 10216

Last change on this file since 10216 was 9456, checked in by swagner, 12 years ago

Updated copyright year and added some missing license headers (#1889)

File size: 6.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Random;
31
32namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
33  /// <summary>
34  /// Abstract base class for symbolic data analysis analyzers that validate a solution on a separate data partition using the evaluator.
35  /// </summary>
36  [StorableClass]
37  public abstract class SymbolicDataAnalysisSingleObjectiveValidationAnalyzer<T, U> : SymbolicDataAnalysisSingleObjectiveAnalyzer,
38    ISymbolicDataAnalysisValidationAnalyzer<T, U>
39    where T : class, ISymbolicDataAnalysisSingleObjectiveEvaluator<U>
40    where U : class, IDataAnalysisProblemData {
41    private const string RandomParameterName = "Random";
42    private const string ProblemDataParameterName = "ProblemData";
43    private const string EvaluatorParameterName = "Evaluator";
44    private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
45    private const string ValidationPartitionParameterName = "ValidationPartition";
46    private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
47    private const string PercentageOfBestSolutionsParameterName = "PercentageOfBestSolutions";
48
49    #region parameter properties
50    public ILookupParameter<IRandom> RandomParameter {
51      get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
52    }
53    public ILookupParameter<U> ProblemDataParameter {
54      get { return (ILookupParameter<U>)Parameters[ProblemDataParameterName]; }
55    }
56    public ILookupParameter<T> EvaluatorParameter {
57      get { return (ILookupParameter<T>)Parameters[EvaluatorParameterName]; }
58    }
59    public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
60      get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
61    }
62    public IValueLookupParameter<IntRange> ValidationPartitionParameter {
63      get { return (IValueLookupParameter<IntRange>)Parameters[ValidationPartitionParameterName]; }
64    }
65    public IValueLookupParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
66      get { return (IValueLookupParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
67    }
68    public IValueLookupParameter<PercentValue> PercentageOfBestSolutionsParameter {
69      get { return (IValueLookupParameter<PercentValue>)Parameters[PercentageOfBestSolutionsParameterName]; }
70    }
71    #endregion
72
73    [StorableConstructor]
74    protected SymbolicDataAnalysisSingleObjectiveValidationAnalyzer(bool deserializing) : base(deserializing) { }
75    protected SymbolicDataAnalysisSingleObjectiveValidationAnalyzer(SymbolicDataAnalysisSingleObjectiveValidationAnalyzer<T, U> original, Cloner cloner)
76      : base(original, cloner) {
77    }
78
79    protected SymbolicDataAnalysisSingleObjectiveValidationAnalyzer(): base() {
80      Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator."));
81      Parameters.Add(new LookupParameter<U>(ProblemDataParameterName, "The problem data of the symbolic data analysis problem."));
82      Parameters.Add(new LookupParameter<T>(EvaluatorParameterName, "The operator to use for fitness evaluation on the validation partition."));
83      Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter for symbolic data analysis expression trees."));
84      Parameters.Add(new ValueLookupParameter<IntRange>(ValidationPartitionParameterName, "The validation partition."));
85      Parameters.Add(new ValueLookupParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index."));
86      Parameters.Add(new ValueLookupParameter<PercentValue>(PercentageOfBestSolutionsParameterName,
87                                                            "The percentage of the top solutions which should be analyzed.", new PercentValue(0.1)));
88    }
89
90    [StorableHook(HookType.AfterDeserialization)]
91    private void AfterDeserialization() {
92      if (!Parameters.ContainsKey(PercentageOfBestSolutionsParameterName))
93        Parameters.Add(new ValueLookupParameter<PercentValue>(PercentageOfBestSolutionsParameterName,
94                                                               "The percentage of the top solutions which should be analyzed.", new PercentValue(1)));
95    }
96
97    protected IEnumerable<int> GenerateRowsToEvaluate() {
98      int seed = RandomParameter.ActualValue.Next();
99      int samplesStart = ValidationPartitionParameter.ActualValue.Start;
100      int samplesEnd = ValidationPartitionParameter.ActualValue.End;
101      int testPartitionStart = ProblemDataParameter.ActualValue.TestPartition.Start;
102      int testPartitionEnd = ProblemDataParameter.ActualValue.TestPartition.End;
103
104      if (samplesEnd < samplesStart) throw new ArgumentException("Start value is larger than end value.");
105      int count = (int)((samplesEnd - samplesStart) * RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value);
106      if (count == 0) count = 1;
107      return RandomEnumerable.SampleRandomNumbers(seed, samplesStart, samplesEnd, count)
108        .Where(i => i < testPartitionStart || testPartitionEnd <= i);
109    }
110  }
111}
Note: See TracBrowser for help on using the repository browser.