[8798] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8798] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Analysis;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
| 33 | [Item("SymbolicTimeSeriesPrognosisSingleObjectiveOverfittingAnalyzer", "Calculates and tracks correlation of training and validation fitness of symbolic time-series prognosis models.")]
|
---|
| 34 | [StorableClass]
|
---|
| 35 | public sealed class SymbolicTimeSeriesPrognosisSingleObjectiveOverfittingAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationAnalyzer<ISymbolicTimeSeriesPrognosisSingleObjectiveEvaluator, ITimeSeriesPrognosisProblemData> {
|
---|
| 36 | private const string TrainingValidationCorrelationParameterName = "Training and validation fitness correlation";
|
---|
| 37 | private const string TrainingValidationCorrelationTableParameterName = "Training and validation fitness correlation table";
|
---|
| 38 | private const string LowerCorrelationThresholdParameterName = "LowerCorrelationThreshold";
|
---|
| 39 | private const string UpperCorrelationThresholdParameterName = "UpperCorrelationThreshold";
|
---|
| 40 | private const string OverfittingParameterName = "IsOverfitting";
|
---|
| 41 |
|
---|
| 42 | #region parameter properties
|
---|
| 43 | public ILookupParameter<DoubleValue> TrainingValidationQualityCorrelationParameter {
|
---|
| 44 | get { return (ILookupParameter<DoubleValue>)Parameters[TrainingValidationCorrelationParameterName]; }
|
---|
| 45 | }
|
---|
| 46 | public ILookupParameter<DataTable> TrainingValidationQualityCorrelationTableParameter {
|
---|
| 47 | get { return (ILookupParameter<DataTable>)Parameters[TrainingValidationCorrelationTableParameterName]; }
|
---|
| 48 | }
|
---|
| 49 | public IValueLookupParameter<DoubleValue> LowerCorrelationThresholdParameter {
|
---|
| 50 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerCorrelationThresholdParameterName]; }
|
---|
| 51 | }
|
---|
| 52 | public IValueLookupParameter<DoubleValue> UpperCorrelationThresholdParameter {
|
---|
| 53 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperCorrelationThresholdParameterName]; }
|
---|
| 54 | }
|
---|
| 55 | public ILookupParameter<BoolValue> OverfittingParameter {
|
---|
| 56 | get { return (ILookupParameter<BoolValue>)Parameters[OverfittingParameterName]; }
|
---|
| 57 | }
|
---|
| 58 | #endregion
|
---|
| 59 |
|
---|
| 60 | [StorableConstructor]
|
---|
| 61 | private SymbolicTimeSeriesPrognosisSingleObjectiveOverfittingAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 62 | private SymbolicTimeSeriesPrognosisSingleObjectiveOverfittingAnalyzer(SymbolicTimeSeriesPrognosisSingleObjectiveOverfittingAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 63 | public SymbolicTimeSeriesPrognosisSingleObjectiveOverfittingAnalyzer()
|
---|
| 64 | : base() {
|
---|
| 65 | Parameters.Add(new LookupParameter<DoubleValue>(TrainingValidationCorrelationParameterName, "Correlation of training and validation fitnesses"));
|
---|
| 66 | Parameters.Add(new LookupParameter<DataTable>(TrainingValidationCorrelationTableParameterName, "Data table of training and validation fitness correlation values over the whole run."));
|
---|
| 67 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerCorrelationThresholdParameterName, "Lower threshold for correlation value that marks the boundary from non-overfitting to overfitting.", new DoubleValue(0.65)));
|
---|
| 68 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperCorrelationThresholdParameterName, "Upper threshold for correlation value that marks the boundary from overfitting to non-overfitting.", new DoubleValue(0.75)));
|
---|
| 69 | Parameters.Add(new LookupParameter<BoolValue>(OverfittingParameterName, "Boolean indicator for overfitting."));
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 73 | return new SymbolicTimeSeriesPrognosisSingleObjectiveOverfittingAnalyzer(this, cloner);
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public override IOperation Apply() {
|
---|
| 77 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
| 78 | if (!rows.Any()) return base.Apply();
|
---|
| 79 |
|
---|
| 80 | double[] trainingQuality = QualityParameter.ActualValue.Select(x => x.Value).ToArray();
|
---|
| 81 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 82 | var evaluator = EvaluatorParameter.ActualValue;
|
---|
| 83 | // evaluate on validation partition
|
---|
| 84 | IExecutionContext childContext = (IExecutionContext)ExecutionContext.CreateChildOperation(evaluator);
|
---|
| 85 | double[] validationQuality = SymbolicExpressionTree
|
---|
| 86 | .Select(t => evaluator.Evaluate(childContext, t, problemData, rows))
|
---|
| 87 | .ToArray();
|
---|
| 88 | double r = 0.0;
|
---|
| 89 | try {
|
---|
| 90 | r = alglib.spearmancorr2(trainingQuality, validationQuality);
|
---|
| 91 | }
|
---|
| 92 | catch (alglib.alglibexception) {
|
---|
| 93 | r = 0.0;
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | TrainingValidationQualityCorrelationParameter.ActualValue = new DoubleValue(r);
|
---|
| 97 |
|
---|
| 98 | if (TrainingValidationQualityCorrelationTableParameter.ActualValue == null) {
|
---|
| 99 | var dataTable = new DataTable(TrainingValidationQualityCorrelationTableParameter.Name, TrainingValidationQualityCorrelationTableParameter.Description);
|
---|
| 100 | dataTable.Rows.Add(new DataRow(TrainingValidationQualityCorrelationParameter.Name, TrainingValidationQualityCorrelationParameter.Description));
|
---|
| 101 | dataTable.Rows[TrainingValidationQualityCorrelationParameter.Name].VisualProperties.StartIndexZero = true;
|
---|
| 102 | TrainingValidationQualityCorrelationTableParameter.ActualValue = dataTable;
|
---|
| 103 | ResultCollectionParameter.ActualValue.Add(new Result(TrainingValidationQualityCorrelationTableParameter.Name, dataTable));
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | TrainingValidationQualityCorrelationTableParameter.ActualValue.Rows[TrainingValidationQualityCorrelationParameter.Name].Values.Add(r);
|
---|
| 107 |
|
---|
| 108 | if (OverfittingParameter.ActualValue != null && OverfittingParameter.ActualValue.Value) {
|
---|
| 109 | // overfitting == true
|
---|
| 110 | // => r must reach the upper threshold to switch back to non-overfitting state
|
---|
| 111 | OverfittingParameter.ActualValue = new BoolValue(r < UpperCorrelationThresholdParameter.ActualValue.Value);
|
---|
| 112 | } else {
|
---|
| 113 | // overfitting == false
|
---|
| 114 | // => r must drop below lower threshold to switch to overfitting state
|
---|
| 115 | OverfittingParameter.ActualValue = new BoolValue(r < LowerCorrelationThresholdParameter.ActualValue.Value);
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | return base.Apply();
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 | }
|
---|