1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
32 | [Item("Mean squared error Evaluator", "Calculates the mean squared error of a symbolic time-series prognosis solution.")]
|
---|
33 | [StorableClass]
|
---|
34 | public class SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator : SymbolicTimeSeriesPrognosisSingleObjectiveEvaluator {
|
---|
35 | [StorableConstructor]
|
---|
36 | protected SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
|
---|
37 | protected SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator(SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
38 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
39 | return new SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator(this, cloner);
|
---|
40 | }
|
---|
41 |
|
---|
42 | public SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator() : base() { }
|
---|
43 |
|
---|
44 | public override bool Maximization { get { return false; } }
|
---|
45 |
|
---|
46 | public override IOperation InstrumentedApply() {
|
---|
47 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
48 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
49 |
|
---|
50 | var interpreter = (ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter)SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
51 |
|
---|
52 | double quality = Calculate(interpreter, solution,
|
---|
53 | EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper,
|
---|
54 | ProblemDataParameter.ActualValue, rows, EvaluationPartitionParameter.ActualValue,
|
---|
55 | HorizonParameter.ActualValue.Value, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
56 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
57 |
|
---|
58 | return base.InstrumentedApply();
|
---|
59 | }
|
---|
60 |
|
---|
61 | public static double Calculate(ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, ITimeSeriesPrognosisProblemData problemData, IEnumerable<int> rows, IntRange evaluationPartition, int horizon, bool applyLinearScaling) {
|
---|
62 | var horizions = rows.Select(r => Math.Min(horizon, evaluationPartition.End - r));
|
---|
63 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows.Zip(horizions, Enumerable.Range).SelectMany(r => r));
|
---|
64 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows, horizions).SelectMany(x => x);
|
---|
65 | OnlineCalculatorError errorState;
|
---|
66 |
|
---|
67 | double mse;
|
---|
68 | if (applyLinearScaling && horizon == 1) { //perform normal evaluation and afterwards scale the solution and calculate the fitness value
|
---|
69 | var mseCalculator = new OnlineMeanSquaredErrorCalculator();
|
---|
70 | CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, mseCalculator, problemData.Dataset.Rows * horizon);
|
---|
71 | errorState = mseCalculator.ErrorState;
|
---|
72 | mse = mseCalculator.MeanSquaredError;
|
---|
73 | } else if (applyLinearScaling) { //first create model to perform linear scaling and afterwards calculate fitness for the scaled model
|
---|
74 | var model = new SymbolicTimeSeriesPrognosisModel(problemData.TargetVariable, (ISymbolicExpressionTree)solution.Clone(), interpreter, lowerEstimationLimit, upperEstimationLimit);
|
---|
75 | model.Scale(problemData);
|
---|
76 | var scaledSolution = model.SymbolicExpressionTree;
|
---|
77 | estimatedValues = interpreter.GetSymbolicExpressionTreeValues(scaledSolution, problemData.Dataset, rows, horizions).SelectMany(x => x);
|
---|
78 | var boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
79 | mse = OnlineMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
|
---|
80 | } else {
|
---|
81 | var boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
82 | mse = OnlineMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
|
---|
83 | }
|
---|
84 |
|
---|
85 | if (errorState != OnlineCalculatorError.None) return Double.NaN;
|
---|
86 | else return mse;
|
---|
87 | }
|
---|
88 |
|
---|
89 |
|
---|
90 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, ITimeSeriesPrognosisProblemData problemData, IEnumerable<int> rows) {
|
---|
91 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
92 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
93 | HorizonParameter.ExecutionContext = context;
|
---|
94 | EvaluationPartitionParameter.ExecutionContext = context;
|
---|
95 |
|
---|
96 | double mse = Calculate((ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter)SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, EvaluationPartitionParameter.ActualValue, HorizonParameter.ActualValue.Value, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
97 |
|
---|
98 | HorizonParameter.ExecutionContext = null;
|
---|
99 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
100 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
101 | EvaluationPartitionParameter.ExecutionContext = null;
|
---|
102 |
|
---|
103 | return mse;
|
---|
104 | }
|
---|
105 | }
|
---|
106 | }
|
---|