1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HEAL.Attic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity
|
---|
33 | /// </summary>
|
---|
34 | [StorableType("88E56AF9-AD72-47E4-A613-8875703BD927")]
|
---|
35 | [Item(Name = "SymbolicRegressionSolution", Description = "Represents a symbolic regression solution (model + data) and attributes of the solution like accuracy and complexity.")]
|
---|
36 | public sealed class SymbolicRegressionSolution : RegressionSolution, ISymbolicRegressionSolution {
|
---|
37 | private const string ModelLengthResultName = "Model Length";
|
---|
38 | private const string ModelDepthResultName = "Model Depth";
|
---|
39 |
|
---|
40 | private const string EstimationLimitsResultsResultName = "Estimation Limits Results";
|
---|
41 | private const string EstimationLimitsResultName = "Estimation Limits";
|
---|
42 | private const string TrainingUpperEstimationLimitHitsResultName = "Training Upper Estimation Limit Hits";
|
---|
43 | private const string TestLowerEstimationLimitHitsResultName = "Test Lower Estimation Limit Hits";
|
---|
44 | private const string TrainingLowerEstimationLimitHitsResultName = "Training Lower Estimation Limit Hits";
|
---|
45 | private const string TestUpperEstimationLimitHitsResultName = "Test Upper Estimation Limit Hits";
|
---|
46 | private const string TrainingNaNEvaluationsResultName = "Training NaN Evaluations";
|
---|
47 | private const string TestNaNEvaluationsResultName = "Test NaN Evaluations";
|
---|
48 |
|
---|
49 | private const string ModelBoundsResultName = "Model Bounds";
|
---|
50 |
|
---|
51 | public new ISymbolicRegressionModel Model {
|
---|
52 | get { return (ISymbolicRegressionModel)base.Model; }
|
---|
53 | set { base.Model = value; }
|
---|
54 | }
|
---|
55 | ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model {
|
---|
56 | get { return (ISymbolicDataAnalysisModel)base.Model; }
|
---|
57 | }
|
---|
58 | public int ModelLength {
|
---|
59 | get { return ((IntValue)this[ModelLengthResultName].Value).Value; }
|
---|
60 | private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public int ModelDepth {
|
---|
64 | get { return ((IntValue)this[ModelDepthResultName].Value).Value; }
|
---|
65 | private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; }
|
---|
66 | }
|
---|
67 |
|
---|
68 | private ResultCollection EstimationLimitsResultCollection {
|
---|
69 | get { return (ResultCollection)this[EstimationLimitsResultsResultName].Value; }
|
---|
70 | }
|
---|
71 | public DoubleLimit EstimationLimits {
|
---|
72 | get { return (DoubleLimit)EstimationLimitsResultCollection[EstimationLimitsResultName].Value; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | public int TrainingUpperEstimationLimitHits {
|
---|
76 | get { return ((IntValue)EstimationLimitsResultCollection[TrainingUpperEstimationLimitHitsResultName].Value).Value; }
|
---|
77 | private set { ((IntValue)EstimationLimitsResultCollection[TrainingUpperEstimationLimitHitsResultName].Value).Value = value; }
|
---|
78 | }
|
---|
79 | public int TestUpperEstimationLimitHits {
|
---|
80 | get { return ((IntValue)EstimationLimitsResultCollection[TestUpperEstimationLimitHitsResultName].Value).Value; }
|
---|
81 | private set { ((IntValue)EstimationLimitsResultCollection[TestUpperEstimationLimitHitsResultName].Value).Value = value; }
|
---|
82 | }
|
---|
83 | public int TrainingLowerEstimationLimitHits {
|
---|
84 | get { return ((IntValue)EstimationLimitsResultCollection[TrainingLowerEstimationLimitHitsResultName].Value).Value; }
|
---|
85 | private set { ((IntValue)EstimationLimitsResultCollection[TrainingLowerEstimationLimitHitsResultName].Value).Value = value; }
|
---|
86 | }
|
---|
87 | public int TestLowerEstimationLimitHits {
|
---|
88 | get { return ((IntValue)EstimationLimitsResultCollection[TestLowerEstimationLimitHitsResultName].Value).Value; }
|
---|
89 | private set { ((IntValue)EstimationLimitsResultCollection[TestLowerEstimationLimitHitsResultName].Value).Value = value; }
|
---|
90 | }
|
---|
91 | public int TrainingNaNEvaluations {
|
---|
92 | get { return ((IntValue)EstimationLimitsResultCollection[TrainingNaNEvaluationsResultName].Value).Value; }
|
---|
93 | private set { ((IntValue)EstimationLimitsResultCollection[TrainingNaNEvaluationsResultName].Value).Value = value; }
|
---|
94 | }
|
---|
95 | public int TestNaNEvaluations {
|
---|
96 | get { return ((IntValue)EstimationLimitsResultCollection[TestNaNEvaluationsResultName].Value).Value; }
|
---|
97 | private set { ((IntValue)EstimationLimitsResultCollection[TestNaNEvaluationsResultName].Value).Value = value; }
|
---|
98 | }
|
---|
99 |
|
---|
100 | public IntervalCollection ModelBoundsCollection {
|
---|
101 | get {
|
---|
102 | if (!ContainsKey(ModelBoundsResultName)) return null;
|
---|
103 | return (IntervalCollection)this[ModelBoundsResultName].Value;
|
---|
104 | }
|
---|
105 | private set {
|
---|
106 | if (ContainsKey(ModelBoundsResultName)) {
|
---|
107 | this[ModelBoundsResultName].Value = value;
|
---|
108 | } else {
|
---|
109 | Add(new Result(ModelBoundsResultName, "Results concerning the derivation of symbolic regression solution", value));
|
---|
110 | }
|
---|
111 |
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 |
|
---|
116 |
|
---|
117 | [StorableConstructor]
|
---|
118 | private SymbolicRegressionSolution(StorableConstructorFlag _) : base(_) { }
|
---|
119 | private SymbolicRegressionSolution(SymbolicRegressionSolution original, Cloner cloner)
|
---|
120 | : base(original, cloner) {
|
---|
121 | }
|
---|
122 | public SymbolicRegressionSolution(ISymbolicRegressionModel model, IRegressionProblemData problemData)
|
---|
123 | : base(model, problemData) {
|
---|
124 | foreach (var node in model.SymbolicExpressionTree.Root.IterateNodesPrefix().OfType<SymbolicExpressionTreeTopLevelNode>())
|
---|
125 | node.SetGrammar(null);
|
---|
126 |
|
---|
127 | Add(new Result(ModelLengthResultName, "Length of the symbolic regression model.", new IntValue()));
|
---|
128 | Add(new Result(ModelDepthResultName, "Depth of the symbolic regression model.", new IntValue()));
|
---|
129 |
|
---|
130 | ResultCollection estimationLimitResults = new ResultCollection();
|
---|
131 | estimationLimitResults.Add(new Result(EstimationLimitsResultName, "", new DoubleLimit()));
|
---|
132 | estimationLimitResults.Add(new Result(TrainingUpperEstimationLimitHitsResultName, "", new IntValue()));
|
---|
133 | estimationLimitResults.Add(new Result(TestUpperEstimationLimitHitsResultName, "", new IntValue()));
|
---|
134 | estimationLimitResults.Add(new Result(TrainingLowerEstimationLimitHitsResultName, "", new IntValue()));
|
---|
135 | estimationLimitResults.Add(new Result(TestLowerEstimationLimitHitsResultName, "", new IntValue()));
|
---|
136 | estimationLimitResults.Add(new Result(TrainingNaNEvaluationsResultName, "", new IntValue()));
|
---|
137 | estimationLimitResults.Add(new Result(TestNaNEvaluationsResultName, "", new IntValue()));
|
---|
138 | Add(new Result(EstimationLimitsResultsResultName, "Results concerning the estimation limits of symbolic regression solution", estimationLimitResults));
|
---|
139 |
|
---|
140 | if (IntervalInterpreter.IsCompatible(Model.SymbolicExpressionTree))
|
---|
141 | Add(new Result(ModelBoundsResultName, "Results concerning the derivation of symbolic regression solution", new IntervalCollection()));
|
---|
142 |
|
---|
143 | RecalculateResults();
|
---|
144 | }
|
---|
145 |
|
---|
146 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
147 | return new SymbolicRegressionSolution(this, cloner);
|
---|
148 | }
|
---|
149 |
|
---|
150 | [StorableHook(HookType.AfterDeserialization)]
|
---|
151 | private void AfterDeserialization() {
|
---|
152 | if (!ContainsKey(EstimationLimitsResultsResultName)) {
|
---|
153 | ResultCollection estimationLimitResults = new ResultCollection();
|
---|
154 | estimationLimitResults.Add(new Result(EstimationLimitsResultName, "", new DoubleLimit()));
|
---|
155 | estimationLimitResults.Add(new Result(TrainingUpperEstimationLimitHitsResultName, "", new IntValue()));
|
---|
156 | estimationLimitResults.Add(new Result(TestUpperEstimationLimitHitsResultName, "", new IntValue()));
|
---|
157 | estimationLimitResults.Add(new Result(TrainingLowerEstimationLimitHitsResultName, "", new IntValue()));
|
---|
158 | estimationLimitResults.Add(new Result(TestLowerEstimationLimitHitsResultName, "", new IntValue()));
|
---|
159 | estimationLimitResults.Add(new Result(TrainingNaNEvaluationsResultName, "", new IntValue()));
|
---|
160 | estimationLimitResults.Add(new Result(TestNaNEvaluationsResultName, "", new IntValue()));
|
---|
161 | Add(new Result(EstimationLimitsResultsResultName, "Results concerning the estimation limits of symbolic regression solution", estimationLimitResults));
|
---|
162 | CalculateResults();
|
---|
163 | }
|
---|
164 |
|
---|
165 | if (!ContainsKey(ModelBoundsResultName)) {
|
---|
166 | if (IntervalInterpreter.IsCompatible(Model.SymbolicExpressionTree)) {
|
---|
167 | Add(new Result(ModelBoundsResultName, "Results concerning the derivation of symbolic regression solution", new IntervalCollection()));
|
---|
168 | CalculateResults();
|
---|
169 | }
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | protected override void RecalculateResults() {
|
---|
174 | base.RecalculateResults();
|
---|
175 | CalculateResults();
|
---|
176 | }
|
---|
177 |
|
---|
178 | private void CalculateResults() {
|
---|
179 | ModelLength = Model.SymbolicExpressionTree.Length;
|
---|
180 | ModelDepth = Model.SymbolicExpressionTree.Depth;
|
---|
181 |
|
---|
182 | EstimationLimits.Lower = Model.LowerEstimationLimit;
|
---|
183 | EstimationLimits.Upper = Model.UpperEstimationLimit;
|
---|
184 |
|
---|
185 | TrainingUpperEstimationLimitHits = EstimatedTrainingValues.Count(x => x.IsAlmost(Model.UpperEstimationLimit));
|
---|
186 | TestUpperEstimationLimitHits = EstimatedTestValues.Count(x => x.IsAlmost(Model.UpperEstimationLimit));
|
---|
187 | TrainingLowerEstimationLimitHits = EstimatedTrainingValues.Count(x => x.IsAlmost(Model.LowerEstimationLimit));
|
---|
188 | TestLowerEstimationLimitHits = EstimatedTestValues.Count(x => x.IsAlmost(Model.LowerEstimationLimit));
|
---|
189 | TrainingNaNEvaluations = Model.Interpreter.GetSymbolicExpressionTreeValues(Model.SymbolicExpressionTree, ProblemData.Dataset, ProblemData.TrainingIndices).Count(double.IsNaN);
|
---|
190 | TestNaNEvaluations = Model.Interpreter.GetSymbolicExpressionTreeValues(Model.SymbolicExpressionTree, ProblemData.Dataset, ProblemData.TestIndices).Count(double.IsNaN);
|
---|
191 |
|
---|
192 | //Check if the tree contains unknown symbols for the interval calculation
|
---|
193 | if (IntervalInterpreter.IsCompatible(Model.SymbolicExpressionTree))
|
---|
194 | ModelBoundsCollection = CalculateModelIntervals(this);
|
---|
195 | }
|
---|
196 |
|
---|
197 | private static IntervalCollection CalculateModelIntervals(ISymbolicRegressionSolution solution) {
|
---|
198 | var intervalEvaluation = new IntervalCollection();
|
---|
199 | var interpreter = new IntervalInterpreter();
|
---|
200 | var problemData = solution.ProblemData;
|
---|
201 | var model = solution.Model;
|
---|
202 | var variableRanges = problemData.VariableRanges.GetReadonlyDictionary();
|
---|
203 |
|
---|
204 | intervalEvaluation.AddInterval($"Target {problemData.TargetVariable}", new Interval(variableRanges[problemData.TargetVariable].LowerBound, variableRanges[problemData.TargetVariable].UpperBound));
|
---|
205 | intervalEvaluation.AddInterval("Model", interpreter.GetSymbolicExpressionTreeInterval(model.SymbolicExpressionTree, variableRanges));
|
---|
206 |
|
---|
207 | if (DerivativeCalculator.IsCompatible(model.SymbolicExpressionTree)) {
|
---|
208 | foreach (var inputVariable in model.VariablesUsedForPrediction.OrderBy(v => v, new NaturalStringComparer())) {
|
---|
209 | var derivedModel = DerivativeCalculator.Derive(model.SymbolicExpressionTree, inputVariable);
|
---|
210 | var derivedResultInterval = interpreter.GetSymbolicExpressionTreeInterval(derivedModel, variableRanges);
|
---|
211 |
|
---|
212 | intervalEvaluation.AddInterval(" ∂f/∂" + inputVariable, new Interval(derivedResultInterval.LowerBound, derivedResultInterval.UpperBound));
|
---|
213 | }
|
---|
214 | }
|
---|
215 |
|
---|
216 | return intervalEvaluation;
|
---|
217 | }
|
---|
218 | }
|
---|
219 | }
|
---|