1 | #region License Information
|
---|
2 |
|
---|
3 | /* HeuristicLab
|
---|
4 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #endregion
|
---|
23 |
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
31 | [StorableClass]
|
---|
32 | [Item("SymbolicRegressionPruningOperator", "An operator which prunes symbolic regression trees.")]
|
---|
33 | public class SymbolicRegressionPruningOperator : SymbolicDataAnalysisExpressionPruningOperator {
|
---|
34 | private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator";
|
---|
35 |
|
---|
36 | protected SymbolicRegressionPruningOperator(SymbolicRegressionPruningOperator original, Cloner cloner)
|
---|
37 | : base(original, cloner) {
|
---|
38 | }
|
---|
39 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
40 | return new SymbolicRegressionPruningOperator(this, cloner);
|
---|
41 | }
|
---|
42 |
|
---|
43 | [StorableConstructor]
|
---|
44 | protected SymbolicRegressionPruningOperator(bool deserializing) : base(deserializing) { }
|
---|
45 |
|
---|
46 | public SymbolicRegressionPruningOperator() {
|
---|
47 | var impactValuesCalculator = new SymbolicRegressionSolutionImpactValuesCalculator();
|
---|
48 | Parameters.Add(new ValueParameter<ISymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, "The impact values calculator to be used for figuring out the node impacts.", impactValuesCalculator));
|
---|
49 | }
|
---|
50 |
|
---|
51 | protected override ISymbolicDataAnalysisModel CreateModel() {
|
---|
52 | return new SymbolicRegressionModel(SymbolicExpressionTree, Interpreter, EstimationLimits.Lower, EstimationLimits.Upper);
|
---|
53 | }
|
---|
54 |
|
---|
55 | protected override double Evaluate(IDataAnalysisModel model) {
|
---|
56 | var regressionModel = (IRegressionModel)model;
|
---|
57 | var regressionProblemData = (IRegressionProblemData)ProblemData;
|
---|
58 | var trainingIndices = Enumerable.Range(FitnessCalculationPartition.Start, FitnessCalculationPartition.Size);
|
---|
59 | var estimatedValues = regressionModel.GetEstimatedValues(ProblemData.Dataset, trainingIndices); // also bounds the values
|
---|
60 | var targetValues = ProblemData.Dataset.GetDoubleValues(regressionProblemData.TargetVariable, trainingIndices);
|
---|
61 | OnlineCalculatorError errorState;
|
---|
62 | var quality = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
63 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
64 | return quality*quality;
|
---|
65 | }
|
---|
66 | }
|
---|
67 | }
|
---|