1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
30 | /// <summary>
|
---|
31 | /// Represents a symbolic regression model
|
---|
32 | /// </summary>
|
---|
33 | [StorableClass]
|
---|
34 | [Item(Name = "Symbolic Regression Model", Description = "Represents a symbolic regression model.")]
|
---|
35 | public class SymbolicRegressionModel : SymbolicDataAnalysisModel, ISymbolicRegressionModel {
|
---|
36 | [Storable]
|
---|
37 | private readonly string targetVariable;
|
---|
38 | public string TargetVariable {
|
---|
39 | get { return targetVariable; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | protected SymbolicRegressionModel(bool deserializing) : base(deserializing) { }
|
---|
44 |
|
---|
45 | protected SymbolicRegressionModel(SymbolicRegressionModel original, Cloner cloner)
|
---|
46 | : base(original, cloner) {
|
---|
47 | this.targetVariable = original.targetVariable;
|
---|
48 | }
|
---|
49 |
|
---|
50 | public SymbolicRegressionModel(string targetVariable, ISymbolicExpressionTree tree,
|
---|
51 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
52 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
|
---|
53 | : base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) {
|
---|
54 | this.targetVariable = targetVariable;
|
---|
55 | }
|
---|
56 |
|
---|
57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
58 | return new SymbolicRegressionModel(this, cloner);
|
---|
59 | }
|
---|
60 |
|
---|
61 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
62 | return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows)
|
---|
63 | .LimitToRange(LowerEstimationLimit, UpperEstimationLimit);
|
---|
64 | }
|
---|
65 |
|
---|
66 | public ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
67 | return new SymbolicRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
68 | }
|
---|
69 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
70 | return CreateRegressionSolution(problemData);
|
---|
71 | }
|
---|
72 |
|
---|
73 | public void Scale(IRegressionProblemData problemData) {
|
---|
74 | Scale(problemData, problemData.TargetVariable);
|
---|
75 | }
|
---|
76 | }
|
---|
77 | }
|
---|