Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.cs @ 14853

Last change on this file since 14853 was 14186, checked in by swagner, 8 years ago

#2526: Updated year of copyrights in license headers

File size: 4.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
30  [Item("Pearson R² Evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic regression solution.")]
31  [StorableClass]
32  public class SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
33    [StorableConstructor]
34    protected SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { }
35    protected SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner)
36      : base(original, cloner) {
37    }
38    public override IDeepCloneable Clone(Cloner cloner) {
39      return new SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(this, cloner);
40    }
41
42    public SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator() : base() { }
43
44    public override bool Maximization { get { return true; } }
45
46    public override IOperation InstrumentedApply() {
47      var solution = SymbolicExpressionTreeParameter.ActualValue;
48      IEnumerable<int> rows = GenerateRowsToEvaluate();
49
50      double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
51      QualityParameter.ActualValue = new DoubleValue(quality);
52
53      return base.InstrumentedApply();
54    }
55
56    public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
57      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
58      IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
59      OnlineCalculatorError errorState;
60
61      double r;
62      if (applyLinearScaling) {
63        var rCalculator = new OnlinePearsonsRCalculator();
64        CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, rCalculator, problemData.Dataset.Rows);
65        errorState = rCalculator.ErrorState;
66        r = rCalculator.R;
67      } else {
68        IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
69        r = OnlinePearsonsRCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
70      }
71      if (errorState != OnlineCalculatorError.None) return double.NaN;
72      return r*r;
73    }
74
75    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
76      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
77      EstimationLimitsParameter.ExecutionContext = context;
78      ApplyLinearScalingParameter.ExecutionContext = context;
79
80      double r2 = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
81
82      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
83      EstimationLimitsParameter.ExecutionContext = null;
84      ApplyLinearScalingParameter.ExecutionContext = null;
85
86      return r2;
87    }
88  }
89}
Note: See TracBrowser for help on using the repository browser.