[10355] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[10355] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[17097] | 29 | using HEAL.Attic;
|
---|
[10355] | 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
[10508] | 32 | [Item("Mean relative error Evaluator", "Evaluator for symbolic regression models that calculates the mean relative error avg( |y' - y| / (|y| + 1))." +
|
---|
[10355] | 33 | "The +1 is necessary to handle data with the value of 0.0 correctly. " +
|
---|
| 34 | "Notice: Linear scaling is ignored for this evaluator.")]
|
---|
[17097] | 35 | [StorableType("8A5AAF93-5338-4E11-B3B2-3D9274329E5F")]
|
---|
[10355] | 36 | public class SymbolicRegressionMeanRelativeErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
| 37 | public override bool Maximization { get { return false; } }
|
---|
| 38 | [StorableConstructor]
|
---|
[17097] | 39 | protected SymbolicRegressionMeanRelativeErrorEvaluator(StorableConstructorFlag _) : base(_) { }
|
---|
[10355] | 40 | protected SymbolicRegressionMeanRelativeErrorEvaluator(SymbolicRegressionMeanRelativeErrorEvaluator original, Cloner cloner)
|
---|
| 41 | : base(original, cloner) {
|
---|
| 42 | }
|
---|
| 43 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 44 | return new SymbolicRegressionMeanRelativeErrorEvaluator(this, cloner);
|
---|
| 45 | }
|
---|
| 46 | public SymbolicRegressionMeanRelativeErrorEvaluator() : base() { }
|
---|
| 47 |
|
---|
| 48 | public override IOperation InstrumentedApply() {
|
---|
| 49 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 50 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
| 51 |
|
---|
[10508] | 52 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows);
|
---|
[10355] | 53 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 54 |
|
---|
| 55 | return base.InstrumentedApply();
|
---|
| 56 | }
|
---|
| 57 |
|
---|
[10508] | 58 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
[10355] | 59 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
| 60 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 61 | IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
| 62 |
|
---|
| 63 | var relResiduals = boundedEstimatedValues.Zip(targetValues, (e, t) => Math.Abs(t - e) / (Math.Abs(t) + 1.0));
|
---|
| 64 |
|
---|
| 65 | OnlineCalculatorError errorState;
|
---|
| 66 | OnlineCalculatorError varErrorState;
|
---|
| 67 | double mre;
|
---|
| 68 | double variance;
|
---|
| 69 | OnlineMeanAndVarianceCalculator.Calculate(relResiduals, out mre, out variance, out errorState, out varErrorState);
|
---|
| 70 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
| 71 | return mre;
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
| 75 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 76 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
| 77 |
|
---|
[10508] | 78 | double mre = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
|
---|
[10355] | 79 |
|
---|
| 80 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 81 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
| 82 |
|
---|
| 83 | return mre;
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 | } |
---|