[6256] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6256] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[8704] | 22 | using System;
|
---|
[6256] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[8704] | 25 | using AutoDiff;
|
---|
[6256] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
[6555] | 34 | [Item("Constant Optimization Evaluator", "Calculates Pearson R² of a symbolic regression solution and optimizes the constant used.")]
|
---|
[6256] | 35 | [StorableClass]
|
---|
| 36 | public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
| 37 | private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
|
---|
| 38 | private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
|
---|
| 39 | private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
|
---|
| 40 | private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
|
---|
[8823] | 41 | private const string UpdateConstantsInTreeParameterName = "UpdateConstantsInSymbolicExpressionTree";
|
---|
[6256] | 42 |
|
---|
| 43 | public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
|
---|
| 44 | get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
|
---|
| 45 | }
|
---|
| 46 | public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
|
---|
| 47 | get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
|
---|
| 48 | }
|
---|
| 49 | public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
|
---|
| 50 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
|
---|
| 51 | }
|
---|
| 52 | public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
|
---|
| 53 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
|
---|
| 54 | }
|
---|
[8823] | 55 | public IFixedValueParameter<BoolValue> UpdateConstantsInTreeParameter {
|
---|
| 56 | get { return (IFixedValueParameter<BoolValue>)Parameters[UpdateConstantsInTreeParameterName]; }
|
---|
| 57 | }
|
---|
[6256] | 58 |
|
---|
| 59 | public IntValue ConstantOptimizationIterations {
|
---|
| 60 | get { return ConstantOptimizationIterationsParameter.Value; }
|
---|
| 61 | }
|
---|
| 62 | public DoubleValue ConstantOptimizationImprovement {
|
---|
| 63 | get { return ConstantOptimizationImprovementParameter.Value; }
|
---|
| 64 | }
|
---|
| 65 | public PercentValue ConstantOptimizationProbability {
|
---|
| 66 | get { return ConstantOptimizationProbabilityParameter.Value; }
|
---|
| 67 | }
|
---|
| 68 | public PercentValue ConstantOptimizationRowsPercentage {
|
---|
| 69 | get { return ConstantOptimizationRowsPercentageParameter.Value; }
|
---|
| 70 | }
|
---|
[8823] | 71 | public bool UpdateConstantsInTree {
|
---|
| 72 | get { return UpdateConstantsInTreeParameter.Value.Value; }
|
---|
| 73 | set { UpdateConstantsInTreeParameter.Value.Value = value; }
|
---|
| 74 | }
|
---|
[6256] | 75 |
|
---|
| 76 | public override bool Maximization {
|
---|
| 77 | get { return true; }
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | [StorableConstructor]
|
---|
| 81 | protected SymbolicRegressionConstantOptimizationEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 82 | protected SymbolicRegressionConstantOptimizationEvaluator(SymbolicRegressionConstantOptimizationEvaluator original, Cloner cloner)
|
---|
| 83 | : base(original, cloner) {
|
---|
| 84 | }
|
---|
| 85 | public SymbolicRegressionConstantOptimizationEvaluator()
|
---|
| 86 | : base() {
|
---|
[8938] | 87 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10), true));
|
---|
[6256] | 88 | Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true));
|
---|
| 89 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true));
|
---|
| 90 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true));
|
---|
[8823] | 91 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)));
|
---|
[6256] | 92 | }
|
---|
| 93 |
|
---|
| 94 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 95 | return new SymbolicRegressionConstantOptimizationEvaluator(this, cloner);
|
---|
| 96 | }
|
---|
| 97 |
|
---|
[8823] | 98 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 99 | private void AfterDeserialization() {
|
---|
| 100 | if (!Parameters.ContainsKey(UpdateConstantsInTreeParameterName))
|
---|
| 101 | Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)));
|
---|
| 102 | }
|
---|
| 103 |
|
---|
[10507] | 104 | public override IOperation InstrumentedApply() {
|
---|
[6256] | 105 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 106 | double quality;
|
---|
| 107 | if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
|
---|
| 108 | IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
|
---|
| 109 | quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
|
---|
[8704] | 110 | constantOptimizationRows, ApplyLinearScalingParameter.ActualValue.Value, ConstantOptimizationIterations.Value,
|
---|
[8938] | 111 | EstimationLimitsParameter.ActualValue.Upper, EstimationLimitsParameter.ActualValue.Lower, UpdateConstantsInTree);
|
---|
| 112 |
|
---|
[6256] | 113 | if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
|
---|
| 114 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
[8664] | 115 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
[6256] | 116 | }
|
---|
| 117 | } else {
|
---|
| 118 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
[8664] | 119 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
[6256] | 120 | }
|
---|
| 121 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 122 |
|
---|
[10507] | 123 | return base.InstrumentedApply();
|
---|
[6256] | 124 | }
|
---|
| 125 |
|
---|
| 126 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
| 127 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 128 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
[8664] | 129 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
[6256] | 130 |
|
---|
[9209] | 131 | // Pearson R² evaluator is used on purpose instead of the const-opt evaluator,
|
---|
| 132 | // because Evaluate() is used to get the quality of evolved models on
|
---|
| 133 | // different partitions of the dataset (e.g., best validation model)
|
---|
[8664] | 134 | double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
[6256] | 135 |
|
---|
| 136 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 137 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
[9209] | 138 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
[6256] | 139 |
|
---|
| 140 | return r2;
|
---|
| 141 | }
|
---|
| 142 |
|
---|
[8823] | 143 | #region derivations of functions
|
---|
[8730] | 144 | // create function factory for arctangent
|
---|
| 145 | private readonly Func<Term, UnaryFunc> arctan = UnaryFunc.Factory(
|
---|
[8823] | 146 | eval: Math.Atan,
|
---|
| 147 | diff: x => 1 / (1 + x * x));
|
---|
[8730] | 148 | private static readonly Func<Term, UnaryFunc> sin = UnaryFunc.Factory(
|
---|
[8823] | 149 | eval: Math.Sin,
|
---|
| 150 | diff: Math.Cos);
|
---|
[8730] | 151 | private static readonly Func<Term, UnaryFunc> cos = UnaryFunc.Factory(
|
---|
[8823] | 152 | eval: Math.Cos,
|
---|
| 153 | diff: x => -Math.Sin(x));
|
---|
[8730] | 154 | private static readonly Func<Term, UnaryFunc> tan = UnaryFunc.Factory(
|
---|
[8823] | 155 | eval: Math.Tan,
|
---|
| 156 | diff: x => 1 + Math.Tan(x) * Math.Tan(x));
|
---|
[8730] | 157 | private static readonly Func<Term, UnaryFunc> erf = UnaryFunc.Factory(
|
---|
[8823] | 158 | eval: alglib.errorfunction,
|
---|
| 159 | diff: x => 2.0 * Math.Exp(-(x * x)) / Math.Sqrt(Math.PI));
|
---|
[8730] | 160 | private static readonly Func<Term, UnaryFunc> norm = UnaryFunc.Factory(
|
---|
[8823] | 161 | eval: alglib.normaldistribution,
|
---|
| 162 | diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI));
|
---|
| 163 | #endregion
|
---|
[8730] | 164 |
|
---|
| 165 |
|
---|
[13310] | 166 | // TODO: swap positions of lowerEstimationLimit and upperEstimationLimit parameters
|
---|
[6256] | 167 | public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData,
|
---|
[8938] | 168 | IEnumerable<int> rows, bool applyLinearScaling, int maxIterations, double upperEstimationLimit = double.MaxValue, double lowerEstimationLimit = double.MinValue, bool updateConstantsInTree = true) {
|
---|
[8704] | 169 |
|
---|
| 170 | List<AutoDiff.Variable> variables = new List<AutoDiff.Variable>();
|
---|
| 171 | List<AutoDiff.Variable> parameters = new List<AutoDiff.Variable>();
|
---|
| 172 | List<string> variableNames = new List<string>();
|
---|
| 173 |
|
---|
| 174 | AutoDiff.Term func;
|
---|
[8828] | 175 | if (!TryTransformToAutoDiff(tree.Root.GetSubtree(0), variables, parameters, variableNames, out func))
|
---|
| 176 | throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree.");
|
---|
[8704] | 177 | if (variableNames.Count == 0) return 0.0;
|
---|
| 178 |
|
---|
| 179 | AutoDiff.IParametricCompiledTerm compiledFunc = AutoDiff.TermUtils.Compile(func, variables.ToArray(), parameters.ToArray());
|
---|
| 180 |
|
---|
[6256] | 181 | List<SymbolicExpressionTreeTerminalNode> terminalNodes = tree.Root.IterateNodesPrefix().OfType<SymbolicExpressionTreeTerminalNode>().ToList();
|
---|
[8704] | 182 | double[] c = new double[variables.Count];
|
---|
[6256] | 183 |
|
---|
[8704] | 184 | {
|
---|
| 185 | c[0] = 0.0;
|
---|
| 186 | c[1] = 1.0;
|
---|
| 187 | //extract inital constants
|
---|
| 188 | int i = 2;
|
---|
| 189 | foreach (var node in terminalNodes) {
|
---|
| 190 | ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
|
---|
| 191 | VariableTreeNode variableTreeNode = node as VariableTreeNode;
|
---|
| 192 | if (constantTreeNode != null)
|
---|
| 193 | c[i++] = constantTreeNode.Value;
|
---|
[8828] | 194 | else if (variableTreeNode != null)
|
---|
[8704] | 195 | c[i++] = variableTreeNode.Weight;
|
---|
| 196 | }
|
---|
[6256] | 197 | }
|
---|
[8938] | 198 | double[] originalConstants = (double[])c.Clone();
|
---|
| 199 | double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
[6256] | 200 |
|
---|
[8704] | 201 | alglib.lsfitstate state;
|
---|
| 202 | alglib.lsfitreport rep;
|
---|
| 203 | int info;
|
---|
[6256] | 204 |
|
---|
[12702] | 205 | IDataset ds = problemData.Dataset;
|
---|
[8704] | 206 | double[,] x = new double[rows.Count(), variableNames.Count];
|
---|
| 207 | int row = 0;
|
---|
| 208 | foreach (var r in rows) {
|
---|
| 209 | for (int col = 0; col < variableNames.Count; col++) {
|
---|
| 210 | x[row, col] = ds.GetDoubleValue(variableNames[col], r);
|
---|
| 211 | }
|
---|
| 212 | row++;
|
---|
| 213 | }
|
---|
| 214 | double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
|
---|
| 215 | int n = x.GetLength(0);
|
---|
| 216 | int m = x.GetLength(1);
|
---|
| 217 | int k = c.Length;
|
---|
[6256] | 218 |
|
---|
[8704] | 219 | alglib.ndimensional_pfunc function_cx_1_func = CreatePFunc(compiledFunc);
|
---|
| 220 | alglib.ndimensional_pgrad function_cx_1_grad = CreatePGrad(compiledFunc);
|
---|
[6256] | 221 |
|
---|
[8704] | 222 | try {
|
---|
| 223 | alglib.lsfitcreatefg(x, y, c, n, m, k, false, out state);
|
---|
[8938] | 224 | alglib.lsfitsetcond(state, 0.0, 0.0, maxIterations);
|
---|
| 225 | //alglib.lsfitsetgradientcheck(state, 0.001);
|
---|
[8704] | 226 | alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, null, null);
|
---|
| 227 | alglib.lsfitresults(state, out info, out c, out rep);
|
---|
[6256] | 228 | }
|
---|
[8730] | 229 | catch (ArithmeticException) {
|
---|
[8984] | 230 | return originalQuality;
|
---|
[8730] | 231 | }
|
---|
[8704] | 232 | catch (alglib.alglibexception) {
|
---|
[8984] | 233 | return originalQuality;
|
---|
[8704] | 234 | }
|
---|
[8823] | 235 |
|
---|
[8938] | 236 | //info == -7 => constant optimization failed due to wrong gradient
|
---|
| 237 | if (info != -7) UpdateConstants(tree, c.Skip(2).ToArray());
|
---|
| 238 | var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
| 239 |
|
---|
| 240 | if (!updateConstantsInTree) UpdateConstants(tree, originalConstants.Skip(2).ToArray());
|
---|
| 241 | if (originalQuality - quality > 0.001 || double.IsNaN(quality)) {
|
---|
| 242 | UpdateConstants(tree, originalConstants.Skip(2).ToArray());
|
---|
| 243 | return originalQuality;
|
---|
[8704] | 244 | }
|
---|
[8938] | 245 | return quality;
|
---|
[6256] | 246 | }
|
---|
| 247 |
|
---|
[8938] | 248 | private static void UpdateConstants(ISymbolicExpressionTree tree, double[] constants) {
|
---|
| 249 | int i = 0;
|
---|
| 250 | foreach (var node in tree.Root.IterateNodesPrefix().OfType<SymbolicExpressionTreeTerminalNode>()) {
|
---|
| 251 | ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
|
---|
| 252 | VariableTreeNode variableTreeNode = node as VariableTreeNode;
|
---|
| 253 | if (constantTreeNode != null)
|
---|
| 254 | constantTreeNode.Value = constants[i++];
|
---|
| 255 | else if (variableTreeNode != null)
|
---|
| 256 | variableTreeNode.Weight = constants[i++];
|
---|
| 257 | }
|
---|
| 258 | }
|
---|
| 259 |
|
---|
[8704] | 260 | private static alglib.ndimensional_pfunc CreatePFunc(AutoDiff.IParametricCompiledTerm compiledFunc) {
|
---|
| 261 | return (double[] c, double[] x, ref double func, object o) => {
|
---|
| 262 | func = compiledFunc.Evaluate(c, x);
|
---|
| 263 | };
|
---|
| 264 | }
|
---|
[6256] | 265 |
|
---|
[8704] | 266 | private static alglib.ndimensional_pgrad CreatePGrad(AutoDiff.IParametricCompiledTerm compiledFunc) {
|
---|
| 267 | return (double[] c, double[] x, ref double func, double[] grad, object o) => {
|
---|
| 268 | var tupel = compiledFunc.Differentiate(c, x);
|
---|
| 269 | func = tupel.Item2;
|
---|
| 270 | Array.Copy(tupel.Item1, grad, grad.Length);
|
---|
[6256] | 271 | };
|
---|
| 272 | }
|
---|
| 273 |
|
---|
[8704] | 274 | private static bool TryTransformToAutoDiff(ISymbolicExpressionTreeNode node, List<AutoDiff.Variable> variables, List<AutoDiff.Variable> parameters, List<string> variableNames, out AutoDiff.Term term) {
|
---|
| 275 | if (node.Symbol is Constant) {
|
---|
| 276 | var var = new AutoDiff.Variable();
|
---|
| 277 | variables.Add(var);
|
---|
| 278 | term = var;
|
---|
| 279 | return true;
|
---|
| 280 | }
|
---|
| 281 | if (node.Symbol is Variable) {
|
---|
| 282 | var varNode = node as VariableTreeNode;
|
---|
| 283 | var par = new AutoDiff.Variable();
|
---|
| 284 | parameters.Add(par);
|
---|
| 285 | variableNames.Add(varNode.VariableName);
|
---|
[8828] | 286 | var w = new AutoDiff.Variable();
|
---|
| 287 | variables.Add(w);
|
---|
| 288 | term = AutoDiff.TermBuilder.Product(w, par);
|
---|
[8704] | 289 | return true;
|
---|
| 290 | }
|
---|
| 291 | if (node.Symbol is Addition) {
|
---|
| 292 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 293 | foreach (var subTree in node.Subtrees) {
|
---|
| 294 | AutoDiff.Term t;
|
---|
| 295 | if (!TryTransformToAutoDiff(subTree, variables, parameters, variableNames, out t)) {
|
---|
| 296 | term = null;
|
---|
| 297 | return false;
|
---|
| 298 | }
|
---|
| 299 | terms.Add(t);
|
---|
| 300 | }
|
---|
| 301 | term = AutoDiff.TermBuilder.Sum(terms);
|
---|
| 302 | return true;
|
---|
| 303 | }
|
---|
[8823] | 304 | if (node.Symbol is Subtraction) {
|
---|
| 305 | List<AutoDiff.Term> terms = new List<Term>();
|
---|
| 306 | for (int i = 0; i < node.SubtreeCount; i++) {
|
---|
| 307 | AutoDiff.Term t;
|
---|
| 308 | if (!TryTransformToAutoDiff(node.GetSubtree(i), variables, parameters, variableNames, out t)) {
|
---|
| 309 | term = null;
|
---|
| 310 | return false;
|
---|
| 311 | }
|
---|
| 312 | if (i > 0) t = -t;
|
---|
| 313 | terms.Add(t);
|
---|
| 314 | }
|
---|
| 315 | term = AutoDiff.TermBuilder.Sum(terms);
|
---|
| 316 | return true;
|
---|
| 317 | }
|
---|
[8704] | 318 | if (node.Symbol is Multiplication) {
|
---|
| 319 | AutoDiff.Term a, b;
|
---|
| 320 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out a) ||
|
---|
| 321 | !TryTransformToAutoDiff(node.GetSubtree(1), variables, parameters, variableNames, out b)) {
|
---|
| 322 | term = null;
|
---|
| 323 | return false;
|
---|
| 324 | } else {
|
---|
| 325 | List<AutoDiff.Term> factors = new List<Term>();
|
---|
| 326 | foreach (var subTree in node.Subtrees.Skip(2)) {
|
---|
| 327 | AutoDiff.Term f;
|
---|
| 328 | if (!TryTransformToAutoDiff(subTree, variables, parameters, variableNames, out f)) {
|
---|
| 329 | term = null;
|
---|
| 330 | return false;
|
---|
| 331 | }
|
---|
| 332 | factors.Add(f);
|
---|
| 333 | }
|
---|
| 334 | term = AutoDiff.TermBuilder.Product(a, b, factors.ToArray());
|
---|
| 335 | return true;
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 | if (node.Symbol is Division) {
|
---|
| 339 | // only works for at least two subtrees
|
---|
| 340 | AutoDiff.Term a, b;
|
---|
| 341 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out a) ||
|
---|
| 342 | !TryTransformToAutoDiff(node.GetSubtree(1), variables, parameters, variableNames, out b)) {
|
---|
| 343 | term = null;
|
---|
| 344 | return false;
|
---|
| 345 | } else {
|
---|
| 346 | List<AutoDiff.Term> factors = new List<Term>();
|
---|
| 347 | foreach (var subTree in node.Subtrees.Skip(2)) {
|
---|
| 348 | AutoDiff.Term f;
|
---|
| 349 | if (!TryTransformToAutoDiff(subTree, variables, parameters, variableNames, out f)) {
|
---|
| 350 | term = null;
|
---|
| 351 | return false;
|
---|
| 352 | }
|
---|
| 353 | factors.Add(1.0 / f);
|
---|
| 354 | }
|
---|
| 355 | term = AutoDiff.TermBuilder.Product(a, 1.0 / b, factors.ToArray());
|
---|
| 356 | return true;
|
---|
| 357 | }
|
---|
| 358 | }
|
---|
| 359 | if (node.Symbol is Logarithm) {
|
---|
| 360 | AutoDiff.Term t;
|
---|
| 361 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
|
---|
| 362 | term = null;
|
---|
| 363 | return false;
|
---|
| 364 | } else {
|
---|
| 365 | term = AutoDiff.TermBuilder.Log(t);
|
---|
| 366 | return true;
|
---|
| 367 | }
|
---|
| 368 | }
|
---|
| 369 | if (node.Symbol is Exponential) {
|
---|
| 370 | AutoDiff.Term t;
|
---|
| 371 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
|
---|
| 372 | term = null;
|
---|
| 373 | return false;
|
---|
| 374 | } else {
|
---|
| 375 | term = AutoDiff.TermBuilder.Exp(t);
|
---|
| 376 | return true;
|
---|
| 377 | }
|
---|
[11870] | 378 | }
|
---|
| 379 | if (node.Symbol is Square) {
|
---|
[8730] | 380 | AutoDiff.Term t;
|
---|
| 381 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
|
---|
| 382 | term = null;
|
---|
| 383 | return false;
|
---|
| 384 | } else {
|
---|
[11870] | 385 | term = AutoDiff.TermBuilder.Power(t, 2.0);
|
---|
[8730] | 386 | return true;
|
---|
| 387 | }
|
---|
[11870] | 388 | } if (node.Symbol is SquareRoot) {
|
---|
[8730] | 389 | AutoDiff.Term t;
|
---|
| 390 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
|
---|
| 391 | term = null;
|
---|
| 392 | return false;
|
---|
| 393 | } else {
|
---|
[11870] | 394 | term = AutoDiff.TermBuilder.Power(t, 0.5);
|
---|
[8730] | 395 | return true;
|
---|
| 396 | }
|
---|
[11870] | 397 | } if (node.Symbol is Sine) {
|
---|
[8730] | 398 | AutoDiff.Term t;
|
---|
| 399 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
|
---|
| 400 | term = null;
|
---|
| 401 | return false;
|
---|
| 402 | } else {
|
---|
[11870] | 403 | term = sin(t);
|
---|
[8730] | 404 | return true;
|
---|
| 405 | }
|
---|
[11870] | 406 | } if (node.Symbol is Cosine) {
|
---|
[8730] | 407 | AutoDiff.Term t;
|
---|
| 408 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
|
---|
| 409 | term = null;
|
---|
| 410 | return false;
|
---|
| 411 | } else {
|
---|
[11870] | 412 | term = cos(t);
|
---|
[8730] | 413 | return true;
|
---|
| 414 | }
|
---|
[11870] | 415 | } if (node.Symbol is Tangent) {
|
---|
| 416 | AutoDiff.Term t;
|
---|
| 417 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
|
---|
| 418 | term = null;
|
---|
| 419 | return false;
|
---|
| 420 | } else {
|
---|
| 421 | term = tan(t);
|
---|
| 422 | return true;
|
---|
| 423 | }
|
---|
[8730] | 424 | } if (node.Symbol is Erf) {
|
---|
| 425 | AutoDiff.Term t;
|
---|
| 426 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
|
---|
| 427 | term = null;
|
---|
| 428 | return false;
|
---|
| 429 | } else {
|
---|
| 430 | term = erf(t);
|
---|
| 431 | return true;
|
---|
| 432 | }
|
---|
| 433 | } if (node.Symbol is Norm) {
|
---|
| 434 | AutoDiff.Term t;
|
---|
| 435 | if (!TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out t)) {
|
---|
| 436 | term = null;
|
---|
| 437 | return false;
|
---|
| 438 | } else {
|
---|
| 439 | term = norm(t);
|
---|
| 440 | return true;
|
---|
| 441 | }
|
---|
| 442 | }
|
---|
[8704] | 443 | if (node.Symbol is StartSymbol) {
|
---|
| 444 | var alpha = new AutoDiff.Variable();
|
---|
| 445 | var beta = new AutoDiff.Variable();
|
---|
| 446 | variables.Add(beta);
|
---|
| 447 | variables.Add(alpha);
|
---|
| 448 | AutoDiff.Term branchTerm;
|
---|
| 449 | if (TryTransformToAutoDiff(node.GetSubtree(0), variables, parameters, variableNames, out branchTerm)) {
|
---|
| 450 | term = branchTerm * alpha + beta;
|
---|
| 451 | return true;
|
---|
| 452 | } else {
|
---|
| 453 | term = null;
|
---|
| 454 | return false;
|
---|
| 455 | }
|
---|
| 456 | }
|
---|
| 457 | term = null;
|
---|
| 458 | return false;
|
---|
| 459 | }
|
---|
[8730] | 460 |
|
---|
| 461 | public static bool CanOptimizeConstants(ISymbolicExpressionTree tree) {
|
---|
| 462 | var containsUnknownSymbol = (
|
---|
| 463 | from n in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
| 464 | where
|
---|
| 465 | !(n.Symbol is Variable) &&
|
---|
| 466 | !(n.Symbol is Constant) &&
|
---|
| 467 | !(n.Symbol is Addition) &&
|
---|
| 468 | !(n.Symbol is Subtraction) &&
|
---|
| 469 | !(n.Symbol is Multiplication) &&
|
---|
| 470 | !(n.Symbol is Division) &&
|
---|
| 471 | !(n.Symbol is Logarithm) &&
|
---|
| 472 | !(n.Symbol is Exponential) &&
|
---|
[11870] | 473 | !(n.Symbol is SquareRoot) &&
|
---|
| 474 | !(n.Symbol is Square) &&
|
---|
[8730] | 475 | !(n.Symbol is Sine) &&
|
---|
| 476 | !(n.Symbol is Cosine) &&
|
---|
| 477 | !(n.Symbol is Tangent) &&
|
---|
| 478 | !(n.Symbol is Erf) &&
|
---|
| 479 | !(n.Symbol is Norm) &&
|
---|
| 480 | !(n.Symbol is StartSymbol)
|
---|
| 481 | select n).
|
---|
| 482 | Any();
|
---|
| 483 | return !containsUnknownSymbol;
|
---|
| 484 | }
|
---|
[6256] | 485 | }
|
---|
| 486 | }
|
---|