1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HEAL.Attic;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
33 | /// <summary>
|
---|
34 | /// An operator that optimizes the constants for the best symbolic expression tress in the current generation.
|
---|
35 | /// </summary>
|
---|
36 | [Item("ConstantOptimizationAnalyzer", "An operator that performs a constant optimization on the best symbolic expression trees.")]
|
---|
37 | [StorableType("9FB87E7B-A9E2-49DD-A92A-78BD9FC17916")]
|
---|
38 | public sealed class ConstantOptimizationAnalyzer : SymbolicDataAnalysisSingleObjectiveAnalyzer, IStatefulItem {
|
---|
39 | private const string PercentageOfBestSolutionsParameterName = "PercentageOfBestSolutions";
|
---|
40 | private const string ConstantOptimizationEvaluatorParameterName = "ConstantOptimizationOperator";
|
---|
41 |
|
---|
42 | private const string DataTableNameConstantOptimizationImprovement = "Constant Optimization Improvement";
|
---|
43 | private const string DataRowNameMinimumImprovement = "Minimum improvement";
|
---|
44 | private const string DataRowNameMedianImprovement = "Median improvement";
|
---|
45 | private const string DataRowNameAverageImprovement = "Average improvement";
|
---|
46 | private const string DataRowNameMaximumImprovement = "Maximum improvement";
|
---|
47 |
|
---|
48 | #region parameter properties
|
---|
49 | public IFixedValueParameter<PercentValue> PercentageOfBestSolutionsParameter {
|
---|
50 | get { return (IFixedValueParameter<PercentValue>)Parameters[PercentageOfBestSolutionsParameterName]; }
|
---|
51 | }
|
---|
52 |
|
---|
53 | public IFixedValueParameter<SymbolicRegressionConstantOptimizationEvaluator> ConstantOptimizationEvaluatorParameter {
|
---|
54 | get { return (IFixedValueParameter<SymbolicRegressionConstantOptimizationEvaluator>)Parameters[ConstantOptimizationEvaluatorParameterName]; }
|
---|
55 | }
|
---|
56 | #endregion
|
---|
57 |
|
---|
58 | #region properties
|
---|
59 | public SymbolicRegressionConstantOptimizationEvaluator ConstantOptimizationEvaluator {
|
---|
60 | get { return ConstantOptimizationEvaluatorParameter.Value; }
|
---|
61 | }
|
---|
62 | public double PercentageOfBestSolutions {
|
---|
63 | get { return PercentageOfBestSolutionsParameter.Value.Value; }
|
---|
64 | }
|
---|
65 |
|
---|
66 | private DataTable ConstantOptimizationImprovementDataTable {
|
---|
67 | get {
|
---|
68 | IResult result;
|
---|
69 | ResultCollection.TryGetValue(DataTableNameConstantOptimizationImprovement, out result);
|
---|
70 | if (result == null) return null;
|
---|
71 | return (DataTable)result.Value;
|
---|
72 | }
|
---|
73 | }
|
---|
74 | private DataRow MinimumImprovement {
|
---|
75 | get { return ConstantOptimizationImprovementDataTable.Rows[DataRowNameMinimumImprovement]; }
|
---|
76 | }
|
---|
77 | private DataRow MedianImprovement {
|
---|
78 | get { return ConstantOptimizationImprovementDataTable.Rows[DataRowNameMedianImprovement]; }
|
---|
79 | }
|
---|
80 | private DataRow AverageImprovement {
|
---|
81 | get { return ConstantOptimizationImprovementDataTable.Rows[DataRowNameAverageImprovement]; }
|
---|
82 | }
|
---|
83 | private DataRow MaximumImprovement {
|
---|
84 | get { return ConstantOptimizationImprovementDataTable.Rows[DataRowNameMaximumImprovement]; }
|
---|
85 | }
|
---|
86 | #endregion
|
---|
87 |
|
---|
88 | [StorableConstructor]
|
---|
89 | private ConstantOptimizationAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
90 | private ConstantOptimizationAnalyzer(ConstantOptimizationAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
91 | public override IDeepCloneable Clone(Cloner cloner) { return new ConstantOptimizationAnalyzer(this, cloner); }
|
---|
92 | public ConstantOptimizationAnalyzer()
|
---|
93 | : base() {
|
---|
94 | Parameters.Add(new FixedValueParameter<PercentValue>(PercentageOfBestSolutionsParameterName, "The percentage of the top solutions which should be analyzed.", new PercentValue(0.1)));
|
---|
95 | Parameters.Add(new FixedValueParameter<SymbolicRegressionConstantOptimizationEvaluator>(ConstantOptimizationEvaluatorParameterName, "The operator used to perform the constant optimization"));
|
---|
96 |
|
---|
97 | //Changed the ActualName of the EvaluationPartitionParameter so that it matches the parameter name of symbolic regression problems.
|
---|
98 | ConstantOptimizationEvaluator.EvaluationPartitionParameter.ActualName = "FitnessCalculationPartition";
|
---|
99 | }
|
---|
100 |
|
---|
101 |
|
---|
102 | private double[] qualitiesBeforeCoOp = null;
|
---|
103 | private int[] scopeIndexes = null;
|
---|
104 | void IStatefulItem.InitializeState() {
|
---|
105 | qualitiesBeforeCoOp = null;
|
---|
106 | scopeIndexes = null;
|
---|
107 | }
|
---|
108 | void IStatefulItem.ClearState() {
|
---|
109 | qualitiesBeforeCoOp = null;
|
---|
110 | scopeIndexes = null;
|
---|
111 | }
|
---|
112 |
|
---|
113 | public override IOperation Apply() {
|
---|
114 | //code executed in the first call of analyzer
|
---|
115 | if (qualitiesBeforeCoOp == null) {
|
---|
116 | double[] trainingQuality;
|
---|
117 | // sort is ascending and we take the first n% => order so that best solutions are smallest
|
---|
118 | // sort order is determined by maximization parameter
|
---|
119 | if (Maximization.Value) {
|
---|
120 | // largest values must be sorted first
|
---|
121 | trainingQuality = Quality.Select(x => -x.Value).ToArray();
|
---|
122 | } else {
|
---|
123 | // smallest values must be sorted first
|
---|
124 | trainingQuality = Quality.Select(x => x.Value).ToArray();
|
---|
125 | }
|
---|
126 | // sort trees by training qualities
|
---|
127 | int topN = (int)Math.Max(trainingQuality.Length * PercentageOfBestSolutions, 1);
|
---|
128 | scopeIndexes = Enumerable.Range(0, trainingQuality.Length).ToArray();
|
---|
129 | Array.Sort(trainingQuality, scopeIndexes);
|
---|
130 | scopeIndexes = scopeIndexes.Take(topN).ToArray();
|
---|
131 | qualitiesBeforeCoOp = scopeIndexes.Select(x => Quality[x].Value).ToArray();
|
---|
132 |
|
---|
133 | OperationCollection operationCollection = new OperationCollection();
|
---|
134 | operationCollection.Parallel = true;
|
---|
135 | foreach (var scopeIndex in scopeIndexes) {
|
---|
136 | var childOperation = ExecutionContext.CreateChildOperation(ConstantOptimizationEvaluator, ExecutionContext.Scope.SubScopes[scopeIndex]);
|
---|
137 | operationCollection.Add(childOperation);
|
---|
138 | }
|
---|
139 |
|
---|
140 | return new OperationCollection { operationCollection, ExecutionContext.CreateOperation(this) };
|
---|
141 | }
|
---|
142 |
|
---|
143 | //code executed to analyze results of constant optimization
|
---|
144 | double[] qualitiesAfterCoOp = scopeIndexes.Select(x => Quality[x].Value).ToArray();
|
---|
145 | var qualityImprovement = qualitiesBeforeCoOp.Zip(qualitiesAfterCoOp, (b, a) => a - b).ToArray();
|
---|
146 |
|
---|
147 | if (!ResultCollection.ContainsKey(DataTableNameConstantOptimizationImprovement)) {
|
---|
148 | var dataTable = new DataTable(DataTableNameConstantOptimizationImprovement);
|
---|
149 | ResultCollection.Add(new Result(DataTableNameConstantOptimizationImprovement, dataTable));
|
---|
150 | dataTable.VisualProperties.YAxisTitle = "R²";
|
---|
151 |
|
---|
152 | dataTable.Rows.Add(new DataRow(DataRowNameMinimumImprovement));
|
---|
153 | MinimumImprovement.VisualProperties.StartIndexZero = true;
|
---|
154 |
|
---|
155 | dataTable.Rows.Add(new DataRow(DataRowNameMedianImprovement));
|
---|
156 | MedianImprovement.VisualProperties.StartIndexZero = true;
|
---|
157 |
|
---|
158 | dataTable.Rows.Add(new DataRow(DataRowNameAverageImprovement));
|
---|
159 | AverageImprovement.VisualProperties.StartIndexZero = true;
|
---|
160 |
|
---|
161 | dataTable.Rows.Add(new DataRow(DataRowNameMaximumImprovement));
|
---|
162 | MaximumImprovement.VisualProperties.StartIndexZero = true;
|
---|
163 | }
|
---|
164 |
|
---|
165 | MinimumImprovement.Values.Add(qualityImprovement.Min());
|
---|
166 | MedianImprovement.Values.Add(qualityImprovement.Median());
|
---|
167 | AverageImprovement.Values.Add(qualityImprovement.Average());
|
---|
168 | MaximumImprovement.Values.Add(qualityImprovement.Max());
|
---|
169 |
|
---|
170 | qualitiesBeforeCoOp = null;
|
---|
171 | scopeIndexes = null;
|
---|
172 | return base.Apply();
|
---|
173 | }
|
---|
174 | }
|
---|
175 | }
|
---|