[5557] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5557] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[13310] | 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Analysis;
|
---|
[5557] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[13310] | 27 | using HeuristicLab.Data;
|
---|
[5557] | 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[13310] | 29 | using HeuristicLab.Optimization;
|
---|
[5557] | 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 34 | /// <summary>
|
---|
| 35 | /// An operator that analyzes the training best symbolic regression solution for multi objective symbolic regression problems.
|
---|
| 36 | /// </summary>
|
---|
| 37 | [Item("SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic regression solution for multi objective symbolic regression problems.")]
|
---|
| 38 | [StorableClass]
|
---|
[5685] | 39 | public sealed class SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer<ISymbolicRegressionSolution>,
|
---|
[5747] | 40 | ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator {
|
---|
[5685] | 41 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 42 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
|
---|
[5770] | 43 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
[13310] | 44 | private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
|
---|
| 45 | private const string ValidationPartitionParameterName = "ValidationPartition";
|
---|
| 46 |
|
---|
[5685] | 47 | #region parameter properties
|
---|
| 48 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 49 | get { return (ILookupParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 50 | }
|
---|
| 51 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
| 52 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
| 53 | }
|
---|
[5770] | 54 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 55 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
[5720] | 56 | }
|
---|
[13310] | 57 | public ILookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
|
---|
| 58 | get { return (ILookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | public IValueLookupParameter<IntRange> ValidationPartitionParameter {
|
---|
| 62 | get { return (IValueLookupParameter<IntRange>)Parameters[ValidationPartitionParameterName]; }
|
---|
| 63 | }
|
---|
[5685] | 64 | #endregion
|
---|
| 65 |
|
---|
[5557] | 66 | [StorableConstructor]
|
---|
| 67 | private SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 68 | private SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 69 | public SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer()
|
---|
| 70 | : base() {
|
---|
[13310] | 71 | Parameters.Add(new LookupParameter<IRegressionProblemData>(ProblemDataParameterName, "The problem data for the symbolic regression solution.") { Hidden = true });
|
---|
| 72 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree.") { Hidden = true });
|
---|
| 73 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic regression model.") { Hidden = true });
|
---|
| 74 | Parameters.Add(new LookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "Maximal length of the symbolic expression.") { Hidden = true });
|
---|
| 75 | Parameters.Add(new ValueLookupParameter<IntRange>(ValidationPartitionParameterName, "The validation partition."));
|
---|
[5557] | 76 | }
|
---|
[5685] | 77 |
|
---|
[13310] | 78 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 79 | private void AfterDeserialization() {
|
---|
| 80 | if (!Parameters.ContainsKey(MaximumSymbolicExpressionTreeLengthParameterName))
|
---|
| 81 | Parameters.Add(new LookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "Maximal length of the symbolic expression.") { Hidden = true });
|
---|
| 82 | if (!Parameters.ContainsKey(ValidationPartitionParameterName))
|
---|
| 83 | Parameters.Add(new ValueLookupParameter<IntRange>(ValidationPartitionParameterName, "The validation partition."));
|
---|
| 84 | }
|
---|
| 85 |
|
---|
[5557] | 86 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 87 | return new SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer(this, cloner);
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) {
|
---|
[14027] | 91 | var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
[8972] | 92 | if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
|
---|
[5914] | 93 | return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone());
|
---|
[5557] | 94 | }
|
---|
[13310] | 95 |
|
---|
| 96 | public override IOperation Apply() {
|
---|
| 97 | var operation = base.Apply();
|
---|
| 98 | var paretoFront = TrainingBestSolutionsParameter.ActualValue;
|
---|
| 99 |
|
---|
| 100 | IResult result;
|
---|
| 101 | ScatterPlot qualityToTreeSize;
|
---|
| 102 | if (!ResultCollection.TryGetValue("Pareto Front Analysis", out result)) {
|
---|
| 103 | qualityToTreeSize = new ScatterPlot("Quality vs Tree Size", "");
|
---|
| 104 | qualityToTreeSize.VisualProperties.XAxisMinimumAuto = false;
|
---|
| 105 | qualityToTreeSize.VisualProperties.XAxisMaximumAuto = false;
|
---|
| 106 | qualityToTreeSize.VisualProperties.YAxisMinimumAuto = false;
|
---|
| 107 | qualityToTreeSize.VisualProperties.YAxisMaximumAuto = false;
|
---|
| 108 |
|
---|
| 109 | qualityToTreeSize.VisualProperties.XAxisMinimumFixedValue = 0;
|
---|
| 110 | qualityToTreeSize.VisualProperties.XAxisMaximumFixedValue = MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value;
|
---|
| 111 | qualityToTreeSize.VisualProperties.YAxisMinimumFixedValue = 0;
|
---|
| 112 | qualityToTreeSize.VisualProperties.YAxisMaximumFixedValue = 2;
|
---|
| 113 | ResultCollection.Add(new Result("Pareto Front Analysis", qualityToTreeSize));
|
---|
| 114 | } else {
|
---|
| 115 | qualityToTreeSize = (ScatterPlot)result.Value;
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 |
|
---|
| 119 | int previousTreeLength = -1;
|
---|
| 120 | var sizeParetoFront = new LinkedList<ISymbolicRegressionSolution>();
|
---|
| 121 | foreach (var solution in paretoFront.OrderBy(s => s.Model.SymbolicExpressionTree.Length)) {
|
---|
| 122 | int treeLength = solution.Model.SymbolicExpressionTree.Length;
|
---|
| 123 | if (!sizeParetoFront.Any()) sizeParetoFront.AddLast(solution);
|
---|
| 124 | if (solution.TrainingNormalizedMeanSquaredError < sizeParetoFront.Last.Value.TrainingNormalizedMeanSquaredError) {
|
---|
| 125 | if (treeLength == previousTreeLength)
|
---|
| 126 | sizeParetoFront.RemoveLast();
|
---|
| 127 | sizeParetoFront.AddLast(solution);
|
---|
| 128 | }
|
---|
| 129 | previousTreeLength = treeLength;
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | qualityToTreeSize.Rows.Clear();
|
---|
| 133 | var trainingRow = new ScatterPlotDataRow("Training NMSE", "", sizeParetoFront.Select(x => new Point2D<double>(x.Model.SymbolicExpressionTree.Length, x.TrainingNormalizedMeanSquaredError)));
|
---|
| 134 | trainingRow.VisualProperties.PointSize = 8;
|
---|
| 135 | qualityToTreeSize.Rows.Add(trainingRow);
|
---|
| 136 |
|
---|
| 137 | var validationPartition = ValidationPartitionParameter.ActualValue;
|
---|
| 138 | if (validationPartition.Size != 0) {
|
---|
| 139 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 140 | var validationIndizes = Enumerable.Range(validationPartition.Start, validationPartition.Size).ToList();
|
---|
| 141 | var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, validationIndizes).ToList();
|
---|
| 142 | OnlineCalculatorError error;
|
---|
| 143 | var validationRow = new ScatterPlotDataRow("Validation NMSE", "",
|
---|
| 144 | sizeParetoFront.Select(x => new Point2D<double>(x.Model.SymbolicExpressionTree.Length,
|
---|
| 145 | OnlineNormalizedMeanSquaredErrorCalculator.Calculate(targetValues, x.GetEstimatedValues(validationIndizes), out error))));
|
---|
| 146 | validationRow.VisualProperties.PointSize = 7;
|
---|
| 147 | qualityToTreeSize.Rows.Add(validationRow);
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | return operation;
|
---|
| 151 | }
|
---|
| 152 |
|
---|
[5557] | 153 | }
|
---|
| 154 | }
|
---|