[5618] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5618] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Linq;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
[12281] | 26 | using HeuristicLab.Optimization;
|
---|
[5716] | 27 | using HeuristicLab.Parameters;
|
---|
[17097] | 28 | using HEAL.Attic;
|
---|
[5618] | 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
[12708] | 31 | [Item("Symbolic Regression Problem (multi-objective)", "Represents a multi objective symbolic regression problem.")]
|
---|
[17097] | 32 | [StorableType("4A8D3658-66B3-48B4-B983-D46409045DBE")]
|
---|
[12708] | 33 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 110)]
|
---|
[5733] | 34 | public class SymbolicRegressionMultiObjectiveProblem : SymbolicDataAnalysisMultiObjectiveProblem<IRegressionProblemData, ISymbolicRegressionMultiObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IRegressionProblem {
|
---|
[5618] | 35 | private const double PunishmentFactor = 10;
|
---|
[5685] | 36 | private const int InitialMaximumTreeDepth = 8;
|
---|
| 37 | private const int InitialMaximumTreeLength = 25;
|
---|
[5770] | 38 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
| 39 | private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic regression model.";
|
---|
[5618] | 40 |
|
---|
[5685] | 41 | #region parameter properties
|
---|
[5770] | 42 | public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 43 | get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
[5685] | 44 | }
|
---|
| 45 | #endregion
|
---|
[5770] | 46 |
|
---|
[5685] | 47 | #region properties
|
---|
[5770] | 48 | public DoubleLimit EstimationLimits {
|
---|
| 49 | get { return EstimationLimitsParameter.Value; }
|
---|
[5685] | 50 | }
|
---|
[5770] | 51 |
|
---|
[5685] | 52 | #endregion
|
---|
[5770] | 53 |
|
---|
[5618] | 54 | [StorableConstructor]
|
---|
[17097] | 55 | protected SymbolicRegressionMultiObjectiveProblem(StorableConstructorFlag _) : base(_) { }
|
---|
[8175] | 56 | protected SymbolicRegressionMultiObjectiveProblem(SymbolicRegressionMultiObjectiveProblem original, Cloner cloner)
|
---|
| 57 | : base(original, cloner) {
|
---|
| 58 | RegisterEventHandlers();
|
---|
| 59 | }
|
---|
[5618] | 60 | public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionMultiObjectiveProblem(this, cloner); }
|
---|
| 61 |
|
---|
| 62 | public SymbolicRegressionMultiObjectiveProblem()
|
---|
| 63 | : base(new RegressionProblemData(), new SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
|
---|
[5847] | 64 | Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
|
---|
[5685] | 65 |
|
---|
[5854] | 66 | EstimationLimitsParameter.Hidden = true;
|
---|
| 67 |
|
---|
[8664] | 68 | ApplyLinearScalingParameter.Value.Value = true;
|
---|
[5742] | 69 | Maximization = new BoolArray(new bool[] { true, false });
|
---|
[5685] | 70 | MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
|
---|
| 71 | MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
|
---|
| 72 |
|
---|
[8175] | 73 | RegisterEventHandlers();
|
---|
[6803] | 74 | ConfigureGrammarSymbols();
|
---|
[5685] | 75 | InitializeOperators();
|
---|
[5716] | 76 | UpdateEstimationLimits();
|
---|
[5618] | 77 | }
|
---|
| 78 |
|
---|
[8175] | 79 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 80 | private void AfterDeserialization() {
|
---|
| 81 | RegisterEventHandlers();
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | private void RegisterEventHandlers() {
|
---|
| 85 | SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
|
---|
| 86 | }
|
---|
| 87 |
|
---|
[6803] | 88 | private void ConfigureGrammarSymbols() {
|
---|
| 89 | var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
|
---|
| 90 | if (grammar != null) grammar.ConfigureAsDefaultRegressionGrammar();
|
---|
| 91 | }
|
---|
| 92 |
|
---|
[5685] | 93 | private void InitializeOperators() {
|
---|
| 94 | Operators.Add(new SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer());
|
---|
| 95 | Operators.Add(new SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer());
|
---|
[12281] | 96 | Operators.Add(new SymbolicExpressionTreePhenotypicSimilarityCalculator());
|
---|
| 97 | Operators.Add(new SymbolicRegressionPhenotypicDiversityAnalyzer(Operators.OfType<SymbolicExpressionTreePhenotypicSimilarityCalculator>()));
|
---|
[5685] | 98 | ParameterizeOperators();
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | private void UpdateEstimationLimits() {
|
---|
[8139] | 102 | if (ProblemData.TrainingIndices.Any()) {
|
---|
| 103 | var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
|
---|
[5618] | 104 | var mean = targetValues.Average();
|
---|
| 105 | var range = targetValues.Max() - targetValues.Min();
|
---|
[5770] | 106 | EstimationLimits.Upper = mean + PunishmentFactor * range;
|
---|
| 107 | EstimationLimits.Lower = mean - PunishmentFactor * range;
|
---|
[6754] | 108 | } else {
|
---|
| 109 | EstimationLimits.Upper = double.MaxValue;
|
---|
| 110 | EstimationLimits.Lower = double.MinValue;
|
---|
[5618] | 111 | }
|
---|
| 112 | }
|
---|
[5623] | 113 |
|
---|
[5685] | 114 | protected override void OnProblemDataChanged() {
|
---|
| 115 | base.OnProblemDataChanged();
|
---|
| 116 | UpdateEstimationLimits();
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | protected override void ParameterizeOperators() {
|
---|
| 120 | base.ParameterizeOperators();
|
---|
[5770] | 121 | if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
|
---|
| 122 | var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
|
---|
| 123 | foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
|
---|
| 124 | op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
|
---|
| 125 | }
|
---|
[5685] | 126 | }
|
---|
[12281] | 127 |
|
---|
| 128 | foreach (var op in Operators.OfType<ISolutionSimilarityCalculator>()) {
|
---|
| 129 | op.SolutionVariableName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
|
---|
| 130 | op.QualityVariableName = Evaluator.QualitiesParameter.ActualName;
|
---|
| 131 |
|
---|
| 132 | if (op is SymbolicExpressionTreePhenotypicSimilarityCalculator) {
|
---|
| 133 | var phenotypicSimilarityCalculator = (SymbolicExpressionTreePhenotypicSimilarityCalculator)op;
|
---|
| 134 | phenotypicSimilarityCalculator.ProblemData = ProblemData;
|
---|
| 135 | phenotypicSimilarityCalculator.Interpreter = SymbolicExpressionTreeInterpreter;
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
[5685] | 138 | }
|
---|
[5618] | 139 | }
|
---|
| 140 | }
|
---|