[5505] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12009] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5505] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[13310] | 22 | using System;
|
---|
[5505] | 23 | using System.Collections.Generic;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
[5618] | 30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
[5505] | 31 | [Item("Pearson R² & Tree size Evaluator", "Calculates the Pearson R² and the tree size of a symbolic regression solution.")]
|
---|
| 32 | [StorableClass]
|
---|
| 33 | public class SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
|
---|
| 34 | [StorableConstructor]
|
---|
| 35 | protected SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 36 | protected SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator(SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator original, Cloner cloner)
|
---|
| 37 | : base(original, cloner) {
|
---|
| 38 | }
|
---|
| 39 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 40 | return new SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator(this, cloner);
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public SymbolicRegressionMultiObjectivePearsonRSquaredTreeSizeEvaluator() : base() { }
|
---|
| 44 |
|
---|
[5514] | 45 | public override IEnumerable<bool> Maximization { get { return new bool[2] { true, false }; } }
|
---|
| 46 |
|
---|
[10507] | 47 | public override IOperation InstrumentedApply() {
|
---|
[5505] | 48 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
[5851] | 49 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
[13310] | 50 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 51 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 52 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
| 53 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
| 54 |
|
---|
| 55 | if (UseConstantOptimization) {
|
---|
| 56 | SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows, applyLinearScaling, ConstantOptimizationIterations, estimationLimits.Upper, estimationLimits.Lower);
|
---|
| 57 | }
|
---|
| 58 | double[] qualities = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
|
---|
[5505] | 59 | QualitiesParameter.ActualValue = new DoubleArray(qualities);
|
---|
[10507] | 60 | return base.InstrumentedApply();
|
---|
[5505] | 61 | }
|
---|
| 62 |
|
---|
[13310] | 63 | public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling, int decimalPlaces) {
|
---|
| 64 | double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
| 65 | if (decimalPlaces >= 0)
|
---|
| 66 | r2 = Math.Round(r2, decimalPlaces);
|
---|
| 67 | return new double[2] { r2, solution.Length };
|
---|
[5505] | 68 | }
|
---|
[5613] | 69 |
|
---|
| 70 | public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
[5722] | 71 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
[5770] | 72 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
[8664] | 73 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
[5722] | 74 |
|
---|
[13310] | 75 | double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
|
---|
[5722] | 76 |
|
---|
| 77 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
[5770] | 78 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
[8664] | 79 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
[5722] | 80 |
|
---|
| 81 | return quality;
|
---|
[5613] | 82 | }
|
---|
[5505] | 83 | }
|
---|
| 84 | }
|
---|