[11407] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[11407] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[12147] | 22 | using System;
|
---|
[11407] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 32 | [Item("Pearson R² & Nested Tree size Evaluator", "Calculates the Pearson R² and the nested tree size of a symbolic regression solution.")]
|
---|
| 33 | [StorableClass]
|
---|
[11883] | 34 | public class PearsonRSquaredNestedTreeSizeEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
|
---|
[11407] | 35 | [StorableConstructor]
|
---|
[11883] | 36 | protected PearsonRSquaredNestedTreeSizeEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 37 | protected PearsonRSquaredNestedTreeSizeEvaluator(PearsonRSquaredNestedTreeSizeEvaluator original, Cloner cloner)
|
---|
[11407] | 38 | : base(original, cloner) {
|
---|
| 39 | }
|
---|
| 40 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[11883] | 41 | return new PearsonRSquaredNestedTreeSizeEvaluator(this, cloner);
|
---|
[11407] | 42 | }
|
---|
| 43 |
|
---|
[12848] | 44 | public PearsonRSquaredNestedTreeSizeEvaluator() : base() { }
|
---|
[11407] | 45 |
|
---|
[13310] | 46 | public override IEnumerable<bool> Maximization { get { return new bool[2] { true, false }; } } // maximize R² & minimize nested tree size
|
---|
[11407] | 47 |
|
---|
| 48 | public override IOperation InstrumentedApply() {
|
---|
| 49 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
| 50 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
[11883] | 51 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 52 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 53 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
| 54 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
| 55 |
|
---|
| 56 | if (UseConstantOptimization) {
|
---|
[14004] | 57 | SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows, applyLinearScaling, ConstantOptimizationIterations, updateVariableWeights: ConstantOptimizationUpdateVariableWeights,lowerEstimationLimit: estimationLimits.Lower, upperEstimationLimit: estimationLimits.Upper);
|
---|
[11883] | 58 | }
|
---|
| 59 |
|
---|
[12848] | 60 | double[] qualities = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
|
---|
[11407] | 61 | QualitiesParameter.ActualValue = new DoubleArray(qualities);
|
---|
| 62 | return base.InstrumentedApply();
|
---|
| 63 | }
|
---|
| 64 |
|
---|
[12848] | 65 | public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling, int decimalPlaces) {
|
---|
[11407] | 66 | double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
[12848] | 67 | if (decimalPlaces >= 0)
|
---|
| 68 | r2 = Math.Round(r2, decimalPlaces);
|
---|
[13310] | 69 | return new double[2] { r2, solution.IterateNodesPostfix().Sum(n => n.GetLength()) }; // sum of the length of the whole sub-tree for each node
|
---|
[11407] | 70 | }
|
---|
| 71 |
|
---|
| 72 | public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
| 73 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 74 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
| 75 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
[13310] | 76 | // DecimalPlaces parameter is a FixedValueParameter and doesn't need the context.
|
---|
[11407] | 77 |
|
---|
[13310] | 78 | double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
|
---|
[11407] | 79 |
|
---|
| 80 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 81 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
| 82 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
| 83 |
|
---|
| 84 | return quality;
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 | }
|
---|