[7734] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17097] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7734] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 25 | using HeuristicLab.Parameters;
|
---|
[17097] | 26 | using HEAL.Attic;
|
---|
[7734] | 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 29 | /// <summary>
|
---|
| 30 | /// An operator that collects the training Pareto-best symbolic classificatino solutions for single objective symbolic classificatino problems.
|
---|
| 31 | /// </summary>
|
---|
| 32 | [Item("SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer", "An operator that collects the training Pareto-best symbolic classification solutions for single objective symbolic classification problems.")]
|
---|
[17097] | 33 | [StorableType("881573CA-7246-4203-B5C9-10793325A008")]
|
---|
[8594] | 34 | public sealed class SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer<IClassificationProblemData, ISymbolicClassificationSolution>, ISymbolicClassificationModelCreatorOperator {
|
---|
| 35 | private const string ModelCreatorParameterName = "ModelCreator";
|
---|
[7734] | 36 | #region parameter properties
|
---|
[8594] | 37 | public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
|
---|
| 38 | get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
|
---|
| 39 | }
|
---|
| 40 | ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter {
|
---|
| 41 | get { return ModelCreatorParameter; }
|
---|
| 42 | }
|
---|
[7734] | 43 | #endregion
|
---|
| 44 |
|
---|
| 45 | [StorableConstructor]
|
---|
[17097] | 46 | private SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
[7734] | 47 | private SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer(SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 48 | public SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer()
|
---|
| 49 | : base() {
|
---|
[8594] | 50 | Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
|
---|
[7734] | 51 | }
|
---|
| 52 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 53 | return new SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer(this, cloner);
|
---|
| 54 | }
|
---|
| 55 |
|
---|
[8594] | 56 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 57 | private void AfterDeserialization() {
|
---|
[8883] | 58 | // BackwardsCompatibility3.4
|
---|
| 59 | #region Backwards compatible code, remove with 3.5
|
---|
[8594] | 60 | if (!Parameters.ContainsKey(ModelCreatorParameterName))
|
---|
| 61 | Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
|
---|
[8883] | 62 | #endregion
|
---|
[8594] | 63 | }
|
---|
| 64 |
|
---|
[7734] | 65 | protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree) {
|
---|
[14027] | 66 | var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
[8972] | 67 | if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
|
---|
[8531] | 68 |
|
---|
[8594] | 69 | model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices);
|
---|
| 70 | return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());
|
---|
[7734] | 71 | }
|
---|
| 72 | }
|
---|
| 73 | }
|
---|