[8594] | 1 | #region License Information
|
---|
| 2 |
|
---|
| 3 | /* HeuristicLab
|
---|
[12009] | 4 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8594] | 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | #endregion
|
---|
| 23 |
|
---|
| 24 | using System.Drawing;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 31 | [StorableClass]
|
---|
| 32 | [Item("NormalDistributedThresholdsModelCreator", "")]
|
---|
| 33 | public sealed class NormalDistributedThresholdsModelCreator : Item, ISymbolicDiscriminantFunctionClassificationModelCreator {
|
---|
| 34 | public static new Image StaticItemImage {
|
---|
| 35 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; }
|
---|
| 36 | }
|
---|
| 37 | public override Image ItemImage {
|
---|
| 38 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; }
|
---|
| 39 | }
|
---|
| 40 | [StorableConstructor]
|
---|
| 41 | private NormalDistributedThresholdsModelCreator(bool deserializing) : base(deserializing) { }
|
---|
| 42 | private NormalDistributedThresholdsModelCreator(NormalDistributedThresholdsModelCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 43 | public NormalDistributedThresholdsModelCreator() : base() { }
|
---|
| 44 |
|
---|
| 45 | public override IDeepCloneable Clone(Cloner cloner) { return new NormalDistributedThresholdsModelCreator(this, cloner); }
|
---|
| 46 |
|
---|
| 47 |
|
---|
[14027] | 48 | public ISymbolicClassificationModel CreateSymbolicClassificationModel(string targetVariable, ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) {
|
---|
| 49 | return CreateSymbolicDiscriminantFunctionClassificationModel(targetVariable, tree, interpreter, lowerEstimationLimit, upperEstimationLimit);
|
---|
[8594] | 50 | }
|
---|
[14027] | 51 | public ISymbolicDiscriminantFunctionClassificationModel CreateSymbolicDiscriminantFunctionClassificationModel(string targetVariable, ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) {
|
---|
| 52 | return new SymbolicDiscriminantFunctionClassificationModel(targetVariable, tree, interpreter, new NormalDistributionCutPointsThresholdCalculator(), lowerEstimationLimit, upperEstimationLimit);
|
---|
[8594] | 53 | }
|
---|
| 54 |
|
---|
| 55 | }
|
---|
| 56 | }
|
---|