[8606] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[11170] | 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8606] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Drawing;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 31 | [StorableClass]
|
---|
| 32 | [Item("NearestNeighborModelCreator", "")]
|
---|
| 33 | public sealed class NearestNeighborModelCreator : ParameterizedNamedItem, ISymbolicClassificationModelCreator {
|
---|
| 34 | public static new Image StaticItemImage {
|
---|
| 35 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; }
|
---|
| 36 | }
|
---|
| 37 | public override Image ItemImage {
|
---|
| 38 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Method; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | public IFixedValueParameter<IntValue> KParameter {
|
---|
| 42 | get { return (IFixedValueParameter<IntValue>)Parameters["K"]; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | [StorableConstructor]
|
---|
| 46 | private NearestNeighborModelCreator(bool deserializing) : base(deserializing) { }
|
---|
| 47 | private NearestNeighborModelCreator(NearestNeighborModelCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 48 | public NearestNeighborModelCreator()
|
---|
| 49 | : base() {
|
---|
[8978] | 50 | Parameters.Add(new FixedValueParameter<IntValue>("K", "The number of neighbours to use to determine the class.", new IntValue(11)));
|
---|
[8606] | 51 | }
|
---|
| 52 |
|
---|
| 53 | public override IDeepCloneable Clone(Cloner cloner) { return new NearestNeighborModelCreator(this, cloner); }
|
---|
| 54 |
|
---|
| 55 |
|
---|
| 56 | public ISymbolicClassificationModel CreateSymbolicClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) {
|
---|
| 57 | return new SymbolicNearestNeighbourClassificationModel(KParameter.Value.Value, tree, interpreter, lowerEstimationLimit, upperEstimationLimit);
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | }
|
---|
| 61 | }
|
---|