1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Threading.Tasks;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HEAL.Attic;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Optimization.Operators {
|
---|
31 | /// <summary>
|
---|
32 | /// A base class for items that perform similarity calculation between two solutions.
|
---|
33 | /// </summary>
|
---|
34 | [Item("SimilarityCalculator", "A base class for items that perform similarity calculation between two solutions.")]
|
---|
35 | [StorableType("ACDF2895-0C4E-4C34-A091-F41EF5C78241")]
|
---|
36 | public abstract class SolutionSimilarityCalculator : Item, ISolutionSimilarityCalculator {
|
---|
37 | protected abstract bool IsCommutative { get; }
|
---|
38 |
|
---|
39 | #region Properties
|
---|
40 | [Storable]
|
---|
41 | public string SolutionVariableName { get; set; }
|
---|
42 | [Storable]
|
---|
43 | public string QualityVariableName { get; set; }
|
---|
44 | [Storable]
|
---|
45 | public bool ExecuteInParallel { get; set; }
|
---|
46 | [Storable]
|
---|
47 | public int MaxDegreeOfParallelism { get; set; }
|
---|
48 | #endregion
|
---|
49 |
|
---|
50 | [StorableConstructor]
|
---|
51 | protected SolutionSimilarityCalculator(StorableConstructorFlag _) : base(_) { }
|
---|
52 |
|
---|
53 | protected SolutionSimilarityCalculator(SolutionSimilarityCalculator original, Cloner cloner)
|
---|
54 | : base(original, cloner) {
|
---|
55 | SolutionVariableName = original.SolutionVariableName;
|
---|
56 | QualityVariableName = original.QualityVariableName;
|
---|
57 | ExecuteInParallel = original.ExecuteInParallel;
|
---|
58 | MaxDegreeOfParallelism = original.MaxDegreeOfParallelism;
|
---|
59 | }
|
---|
60 |
|
---|
61 | protected SolutionSimilarityCalculator() : base() {
|
---|
62 | ExecuteInParallel = false;
|
---|
63 | MaxDegreeOfParallelism = -1;
|
---|
64 | }
|
---|
65 |
|
---|
66 | [StorableHook(HookType.AfterDeserialization)]
|
---|
67 | private void AfterDeserialization() {
|
---|
68 | if (MaxDegreeOfParallelism == 0) {
|
---|
69 | ExecuteInParallel = false;
|
---|
70 | MaxDegreeOfParallelism = -1;
|
---|
71 | }
|
---|
72 | }
|
---|
73 |
|
---|
74 | public double[][] CalculateSolutionCrowdSimilarity(IScope leftSolutionCrowd, IScope rightSolutionCrowd) {
|
---|
75 | if (leftSolutionCrowd == null || rightSolutionCrowd == null)
|
---|
76 | throw new ArgumentException("Cannot calculate similarity because one of the provided crowds or both are null.");
|
---|
77 |
|
---|
78 | var leftIndividuals = leftSolutionCrowd.SubScopes;
|
---|
79 | var rightIndividuals = rightSolutionCrowd.SubScopes;
|
---|
80 |
|
---|
81 | if (!leftIndividuals.Any() || !rightIndividuals.Any())
|
---|
82 | throw new ArgumentException("Cannot calculate similarity because one of the provided crowds or both are empty.");
|
---|
83 |
|
---|
84 | var similarityMatrix = new double[leftIndividuals.Count][];
|
---|
85 | for (int i = 0; i < leftIndividuals.Count; i++) {
|
---|
86 | similarityMatrix[i] = new double[rightIndividuals.Count];
|
---|
87 | for (int j = 0; j < rightIndividuals.Count; j++) {
|
---|
88 | similarityMatrix[i][j] = CalculateSolutionSimilarity(leftIndividuals[i], rightIndividuals[j]);
|
---|
89 | }
|
---|
90 | }
|
---|
91 |
|
---|
92 | return similarityMatrix;
|
---|
93 | }
|
---|
94 |
|
---|
95 | public double[][] CalculateSolutionCrowdSimilarity(IScope solutionCrowd) {
|
---|
96 | if (solutionCrowd == null) {
|
---|
97 | throw new ArgumentException("Cannot calculate similarity because the provided crowd is null.");
|
---|
98 | }
|
---|
99 | var individuals = solutionCrowd.SubScopes;
|
---|
100 |
|
---|
101 | if (!individuals.Any()) {
|
---|
102 | throw new ArgumentException("Cannot calculate similarity because the provided crowd is empty.");
|
---|
103 | }
|
---|
104 |
|
---|
105 | var similarityMatrix = new double[individuals.Count][];
|
---|
106 | for (int i = 0; i < individuals.Count; i++) {
|
---|
107 | similarityMatrix[i] = new double[individuals.Count];
|
---|
108 | }
|
---|
109 |
|
---|
110 | if (ExecuteInParallel) {
|
---|
111 | var parallelOptions = new ParallelOptions { MaxDegreeOfParallelism = MaxDegreeOfParallelism };
|
---|
112 | if (IsCommutative) {
|
---|
113 | Parallel.For(0, individuals.Count, parallelOptions, i => {
|
---|
114 | for (int j = i; j < individuals.Count; j++) {
|
---|
115 | similarityMatrix[i][j] =
|
---|
116 | similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
117 | }
|
---|
118 | });
|
---|
119 | } else {
|
---|
120 | Parallel.For(0, individuals.Count, parallelOptions, i => {
|
---|
121 | for (int j = i; j < individuals.Count; j++) {
|
---|
122 | similarityMatrix[i][j] = CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
123 | if (i == j) continue;
|
---|
124 | similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[j], individuals[i]);
|
---|
125 | }
|
---|
126 | });
|
---|
127 | }
|
---|
128 | } else {
|
---|
129 | if (IsCommutative) {
|
---|
130 | for (int i = 0; i < individuals.Count; i++) {
|
---|
131 | for (int j = i; j < individuals.Count; j++) {
|
---|
132 | similarityMatrix[i][j] =
|
---|
133 | similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
134 | }
|
---|
135 | }
|
---|
136 | } else {
|
---|
137 | for (int i = 0; i < individuals.Count; i++) {
|
---|
138 | for (int j = i; j < individuals.Count; j++) {
|
---|
139 | similarityMatrix[i][j] = CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
140 | if (i == j) continue;
|
---|
141 | similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[j], individuals[i]);
|
---|
142 | }
|
---|
143 | }
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | return similarityMatrix;
|
---|
148 | }
|
---|
149 |
|
---|
150 | public abstract double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution);
|
---|
151 |
|
---|
152 | public virtual bool Equals(IScope x, IScope y) {
|
---|
153 | if (ReferenceEquals(x, y)) return true;
|
---|
154 | if (x == null || y == null) return false;
|
---|
155 |
|
---|
156 | var q1 = x.Variables[QualityVariableName].Value;
|
---|
157 | var q2 = y.Variables[QualityVariableName].Value;
|
---|
158 |
|
---|
159 | return CheckQualityEquality(q1, q2) && CalculateSolutionSimilarity(x, y).IsAlmost(1.0);
|
---|
160 | }
|
---|
161 |
|
---|
162 | public virtual int GetHashCode(IScope scope) {
|
---|
163 | var quality = scope.Variables[QualityVariableName].Value;
|
---|
164 | var dv = quality as DoubleValue;
|
---|
165 | if (dv != null)
|
---|
166 | return dv.Value.GetHashCode();
|
---|
167 |
|
---|
168 | var da = quality as DoubleArray;
|
---|
169 | if (da != null) {
|
---|
170 | int hash = 17;
|
---|
171 | unchecked {
|
---|
172 | for (int i = 0; i < da.Length; ++i) {
|
---|
173 | hash += hash * 23 + da[i].GetHashCode();
|
---|
174 | }
|
---|
175 | return hash;
|
---|
176 | }
|
---|
177 | }
|
---|
178 | return 0;
|
---|
179 | }
|
---|
180 |
|
---|
181 | private static bool CheckQualityEquality(IItem q1, IItem q2) {
|
---|
182 | var d1 = q1 as DoubleValue;
|
---|
183 | var d2 = q2 as DoubleValue;
|
---|
184 |
|
---|
185 | if (d1 != null && d2 != null)
|
---|
186 | return d1.Value.IsAlmost(d2.Value);
|
---|
187 |
|
---|
188 | var da1 = q1 as DoubleArray;
|
---|
189 | var da2 = q2 as DoubleArray;
|
---|
190 |
|
---|
191 | if (da1 != null && da2 != null) {
|
---|
192 | if (da1.Length != da2.Length)
|
---|
193 | throw new ArgumentException("The quality arrays must have the same length.");
|
---|
194 |
|
---|
195 | for (int i = 0; i < da1.Length; ++i) {
|
---|
196 | if (!da1[i].IsAlmost(da2[i]))
|
---|
197 | return false;
|
---|
198 | }
|
---|
199 |
|
---|
200 | return true;
|
---|
201 | }
|
---|
202 |
|
---|
203 | throw new ArgumentException("Could not determine quality equality.");
|
---|
204 | }
|
---|
205 | }
|
---|
206 | }
|
---|