1 | using System;
|
---|
2 | using System.Collections;
|
---|
3 | using System.Collections.Generic;
|
---|
4 |
|
---|
5 | namespace SimSharp {
|
---|
6 | /// <summary>
|
---|
7 | /// An implementation of a min-Priority Queue using a heap. Has O(1) .Contains()!
|
---|
8 | /// See https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp/wiki/Getting-Started for more information
|
---|
9 | /// </summary>
|
---|
10 | /// <remarks>
|
---|
11 | /// There are modifications so that the type is not generic anymore and can only hold values of type EventQueueNode
|
---|
12 | /// </remarks>
|
---|
13 | public sealed class EventQueue : IEnumerable<EventQueueNode> {
|
---|
14 | private int _numNodes;
|
---|
15 | private readonly EventQueueNode[] _nodes;
|
---|
16 | private long _numNodesEverEnqueued;
|
---|
17 |
|
---|
18 | /// <summary>
|
---|
19 | /// Instantiate a new Priority Queue
|
---|
20 | /// </summary>
|
---|
21 | /// <param name="maxNodes">EventQueueNodehe max nodes ever allowed to be enqueued (going over this will cause an exception)</param>
|
---|
22 | public EventQueue(int maxNodes) {
|
---|
23 | _numNodes = 0;
|
---|
24 | _nodes = new EventQueueNode[maxNodes + 1];
|
---|
25 | _numNodesEverEnqueued = 0;
|
---|
26 | }
|
---|
27 |
|
---|
28 | /// <summary>
|
---|
29 | /// Returns the number of nodes in the queue. O(1)
|
---|
30 | /// </summary>
|
---|
31 | public int Count {
|
---|
32 | get {
|
---|
33 | return _numNodes;
|
---|
34 | }
|
---|
35 | }
|
---|
36 |
|
---|
37 | /// <summary>
|
---|
38 | /// Returns the maximum number of items that can be enqueued at once in this queue. Once you hit this number (ie. once Count == MaxSize),
|
---|
39 | /// attempting to enqueue another item will throw an exception. O(1)
|
---|
40 | /// </summary>
|
---|
41 | public int MaxSize {
|
---|
42 | get {
|
---|
43 | return _nodes.Length - 1;
|
---|
44 | }
|
---|
45 | }
|
---|
46 |
|
---|
47 | /// <summary>
|
---|
48 | /// Removes every node from the queue. O(n) (So, don't do this often!)
|
---|
49 | /// </summary>
|
---|
50 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
|
---|
51 | public void Clear() {
|
---|
52 | Array.Clear(_nodes, 1, _numNodes);
|
---|
53 | _numNodes = 0;
|
---|
54 | }
|
---|
55 |
|
---|
56 | /// <summary>
|
---|
57 | /// Returns (in O(1)!) whether the given node is in the queue. O(1)
|
---|
58 | /// </summary>
|
---|
59 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
|
---|
60 | public bool Contains(EventQueueNode node) {
|
---|
61 | return (_nodes[node.QueueIndex] == node);
|
---|
62 | }
|
---|
63 |
|
---|
64 | /// <summary>
|
---|
65 | /// Enqueue a node - .Priority must be set beforehand! O(log n)
|
---|
66 | /// </summary>
|
---|
67 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
|
---|
68 | public EventQueueNode Enqueue(DateTime primaryPriority, Event @event, int secondaryPriority = 0) {
|
---|
69 | var node = new EventQueueNode {
|
---|
70 | PrimaryPriority = primaryPriority,
|
---|
71 | SecondaryPriority = secondaryPriority,
|
---|
72 | Event = @event,
|
---|
73 | QueueIndex = ++_numNodes,
|
---|
74 | InsertionIndex = _numNodesEverEnqueued++
|
---|
75 | };
|
---|
76 | _nodes[_numNodes] = node;
|
---|
77 | CascadeUp(_nodes[_numNodes]);
|
---|
78 | return node;
|
---|
79 | }
|
---|
80 |
|
---|
81 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
|
---|
82 | private void Swap(EventQueueNode node1, EventQueueNode node2) {
|
---|
83 | //Swap the nodes
|
---|
84 | _nodes[node1.QueueIndex] = node2;
|
---|
85 | _nodes[node2.QueueIndex] = node1;
|
---|
86 |
|
---|
87 | //Swap their indicies
|
---|
88 | int temp = node1.QueueIndex;
|
---|
89 | node1.QueueIndex = node2.QueueIndex;
|
---|
90 | node2.QueueIndex = temp;
|
---|
91 | }
|
---|
92 |
|
---|
93 | //Performance appears to be slightly better when this is NOT inlined o_O
|
---|
94 | private void CascadeUp(EventQueueNode node) {
|
---|
95 | //aka Heapify-up
|
---|
96 | int parent = node.QueueIndex / 2;
|
---|
97 | while (parent >= 1) {
|
---|
98 | EventQueueNode parentNode = _nodes[parent];
|
---|
99 | if (HasHigherPriority(parentNode, node))
|
---|
100 | break;
|
---|
101 |
|
---|
102 | //Node has lower priority value, so move it up the heap
|
---|
103 | Swap(node, parentNode); //For some reason, this is faster with Swap() rather than (less..?) individual operations, like in CascadeDown()
|
---|
104 |
|
---|
105 | parent = node.QueueIndex / 2;
|
---|
106 | }
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
|
---|
111 | private void CascadeDown(EventQueueNode node) {
|
---|
112 | //aka Heapify-down
|
---|
113 | EventQueueNode newParent;
|
---|
114 | int finalQueueIndex = node.QueueIndex;
|
---|
115 | while (true) {
|
---|
116 | newParent = node;
|
---|
117 | int childLeftIndex = 2 * finalQueueIndex;
|
---|
118 |
|
---|
119 | //Check if the left-child is higher-priority than the current node
|
---|
120 | if (childLeftIndex > _numNodes) {
|
---|
121 | //This could be placed outside the loop, but then we'd have to check newParent != node twice
|
---|
122 | node.QueueIndex = finalQueueIndex;
|
---|
123 | _nodes[finalQueueIndex] = node;
|
---|
124 | break;
|
---|
125 | }
|
---|
126 |
|
---|
127 | EventQueueNode childLeft = _nodes[childLeftIndex];
|
---|
128 | if (HasHigherPriority(childLeft, newParent)) {
|
---|
129 | newParent = childLeft;
|
---|
130 | }
|
---|
131 |
|
---|
132 | //Check if the right-child is higher-priority than either the current node or the left child
|
---|
133 | int childRightIndex = childLeftIndex + 1;
|
---|
134 | if (childRightIndex <= _numNodes) {
|
---|
135 | EventQueueNode childRight = _nodes[childRightIndex];
|
---|
136 | if (HasHigherPriority(childRight, newParent)) {
|
---|
137 | newParent = childRight;
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 | //If either of the children has higher (smaller) priority, swap and continue cascading
|
---|
142 | if (newParent != node) {
|
---|
143 | //Move new parent to its new index. node will be moved once, at the end
|
---|
144 | //Doing it this way is one less assignment operation than calling Swap()
|
---|
145 | _nodes[finalQueueIndex] = newParent;
|
---|
146 |
|
---|
147 | int temp = newParent.QueueIndex;
|
---|
148 | newParent.QueueIndex = finalQueueIndex;
|
---|
149 | finalQueueIndex = temp;
|
---|
150 | } else {
|
---|
151 | //See note above
|
---|
152 | node.QueueIndex = finalQueueIndex;
|
---|
153 | _nodes[finalQueueIndex] = node;
|
---|
154 | break;
|
---|
155 | }
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | /// <summary>
|
---|
160 | /// Returns true if 'higher' has higher priority than 'lower', false otherwise.
|
---|
161 | /// Note that calling HasHigherPriority(node, node) (ie. both arguments the same node) will return false
|
---|
162 | /// </summary>
|
---|
163 |
|
---|
164 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
|
---|
165 | private bool HasHigherPriority(EventQueueNode higher, EventQueueNode lower) {
|
---|
166 | return (higher.PrimaryPriority < lower.PrimaryPriority ||
|
---|
167 | (higher.PrimaryPriority == lower.PrimaryPriority
|
---|
168 | && (higher.SecondaryPriority < lower.SecondaryPriority ||
|
---|
169 | (higher.SecondaryPriority == lower.SecondaryPriority
|
---|
170 | && higher.InsertionIndex < lower.InsertionIndex))));
|
---|
171 | }
|
---|
172 |
|
---|
173 | /// <summary>
|
---|
174 | /// Removes the head of the queue (node with highest priority; ties are broken by order of insertion), and returns it. O(log n)
|
---|
175 | /// </summary>
|
---|
176 | public EventQueueNode Dequeue() {
|
---|
177 | EventQueueNode returnMe = _nodes[1];
|
---|
178 | Remove(returnMe);
|
---|
179 | return returnMe;
|
---|
180 | }
|
---|
181 |
|
---|
182 | /// <summary>
|
---|
183 | /// Returns the head of the queue, without removing it (use Dequeue() for that). O(1)
|
---|
184 | /// </summary>
|
---|
185 | public EventQueueNode First {
|
---|
186 | get {
|
---|
187 | return _nodes[1];
|
---|
188 | }
|
---|
189 | }
|
---|
190 |
|
---|
191 | /// <summary>
|
---|
192 | /// This method must be called on a node every time its priority changes while it is in the queue.
|
---|
193 | /// <b>Forgetting to call this method will result in a corrupted queue!</b>
|
---|
194 | /// O(log n)
|
---|
195 | /// </summary>
|
---|
196 |
|
---|
197 | [System.Runtime.CompilerServices.MethodImpl(System.Runtime.CompilerServices.MethodImplOptions.AggressiveInlining)]
|
---|
198 | public void UpdatePriority(EventQueueNode node, DateTime primaryPriority, int secondaryPriority) {
|
---|
199 | node.PrimaryPriority = primaryPriority;
|
---|
200 | node.SecondaryPriority = secondaryPriority;
|
---|
201 | OnNodeUpdated(node);
|
---|
202 | }
|
---|
203 |
|
---|
204 | internal void OnNodeUpdated(EventQueueNode node) {
|
---|
205 | //Bubble the updated node up or down as appropriate
|
---|
206 | int parentIndex = node.QueueIndex / 2;
|
---|
207 | EventQueueNode parentNode = _nodes[parentIndex];
|
---|
208 |
|
---|
209 | if (parentIndex > 0 && HasHigherPriority(node, parentNode)) {
|
---|
210 | CascadeUp(node);
|
---|
211 | } else {
|
---|
212 | //Note that CascadeDown will be called if parentNode == node (that is, node is the root)
|
---|
213 | CascadeDown(node);
|
---|
214 | }
|
---|
215 | }
|
---|
216 |
|
---|
217 | /// <summary>
|
---|
218 | /// Removes a node from the queue. Note that the node does not need to be the head of the queue. O(log n)
|
---|
219 | /// </summary>
|
---|
220 | public void Remove(EventQueueNode node) {
|
---|
221 | if (!Contains(node)) {
|
---|
222 | return;
|
---|
223 | }
|
---|
224 | if (_numNodes <= 1) {
|
---|
225 | _nodes[1] = null;
|
---|
226 | _numNodes = 0;
|
---|
227 | return;
|
---|
228 | }
|
---|
229 |
|
---|
230 | //Make sure the node is the last node in the queue
|
---|
231 | bool wasSwapped = false;
|
---|
232 | EventQueueNode formerLastNode = _nodes[_numNodes];
|
---|
233 | if (node.QueueIndex != _numNodes) {
|
---|
234 | //Swap the node with the last node
|
---|
235 | Swap(node, formerLastNode);
|
---|
236 | wasSwapped = true;
|
---|
237 | }
|
---|
238 |
|
---|
239 | _numNodes--;
|
---|
240 | _nodes[node.QueueIndex] = null;
|
---|
241 |
|
---|
242 | if (wasSwapped) {
|
---|
243 | //Now bubble formerLastNode (which is no longer the last node) up or down as appropriate
|
---|
244 | OnNodeUpdated(formerLastNode);
|
---|
245 | }
|
---|
246 | }
|
---|
247 |
|
---|
248 | public IEnumerator<EventQueueNode> GetEnumerator() {
|
---|
249 | for (int i = 1; i <= _numNodes; i++)
|
---|
250 | yield return _nodes[i];
|
---|
251 | }
|
---|
252 |
|
---|
253 | IEnumerator IEnumerable.GetEnumerator() {
|
---|
254 | return GetEnumerator();
|
---|
255 | }
|
---|
256 |
|
---|
257 | /// <summary>
|
---|
258 | /// <b>Should not be called in production code.</b>
|
---|
259 | /// Checks to make sure the queue is still in a valid state. Used for testing/debugging the queue.
|
---|
260 | /// </summary>
|
---|
261 | public bool IsValidQueue() {
|
---|
262 | for (int i = 1; i < _nodes.Length; i++) {
|
---|
263 | if (_nodes[i] != null) {
|
---|
264 | int childLeftIndex = 2 * i;
|
---|
265 | if (childLeftIndex < _nodes.Length && _nodes[childLeftIndex] != null && HasHigherPriority(_nodes[childLeftIndex], _nodes[i]))
|
---|
266 | return false;
|
---|
267 |
|
---|
268 | int childRightIndex = childLeftIndex + 1;
|
---|
269 | if (childRightIndex < _nodes.Length && _nodes[childRightIndex] != null && HasHigherPriority(_nodes[childRightIndex], _nodes[i]))
|
---|
270 | return false;
|
---|
271 | }
|
---|
272 | }
|
---|
273 | return true;
|
---|
274 | }
|
---|
275 | }
|
---|
276 | }
|
---|