1 | /*
|
---|
2 | * sincos_common.h
|
---|
3 | * The basic idea is to exploit Pade polynomials.
|
---|
4 | * A lot of ideas were inspired by the cephes math library (by Stephen L. Moshier
|
---|
5 | * moshier@na-net.ornl.gov) as well as actual code.
|
---|
6 | * The Cephes library can be found here: http://www.netlib.org/cephes/
|
---|
7 | *
|
---|
8 | * Created on: Jun 23, 2012
|
---|
9 | * Author: Danilo Piparo, Thomas Hauth, Vincenzo Innocente
|
---|
10 | */
|
---|
11 |
|
---|
12 | /*
|
---|
13 | * VDT is free software: you can redistribute it and/or modify
|
---|
14 | * it under the terms of the GNU Lesser Public License as published by
|
---|
15 | * the Free Software Foundation, either version 3 of the License, or
|
---|
16 | * (at your option) any later version.
|
---|
17 | *
|
---|
18 | * This program is distributed in the hope that it will be useful,
|
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
21 | * GNU Lesser Public License for more details.
|
---|
22 | *
|
---|
23 | * You should have received a copy of the GNU Lesser Public License
|
---|
24 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
25 | */
|
---|
26 |
|
---|
27 | #include "vdtcore_common.h"
|
---|
28 | #include <cmath>
|
---|
29 | #include <limits>
|
---|
30 |
|
---|
31 | #ifndef SINCOS_COMMON_H_
|
---|
32 | #define SINCOS_COMMON_H_
|
---|
33 |
|
---|
34 | namespace vdt{
|
---|
35 |
|
---|
36 | namespace details{
|
---|
37 |
|
---|
38 | // double precision constants
|
---|
39 |
|
---|
40 | const double DP1sc = 7.85398125648498535156E-1;
|
---|
41 | const double DP2sc = 3.77489470793079817668E-8;
|
---|
42 | const double DP3sc = 2.69515142907905952645E-15;
|
---|
43 |
|
---|
44 | const double C1sin = 1.58962301576546568060E-10;
|
---|
45 | const double C2sin =-2.50507477628578072866E-8;
|
---|
46 | const double C3sin = 2.75573136213857245213E-6;
|
---|
47 | const double C4sin =-1.98412698295895385996E-4;
|
---|
48 | const double C5sin = 8.33333333332211858878E-3;
|
---|
49 | const double C6sin =-1.66666666666666307295E-1;
|
---|
50 |
|
---|
51 | const double C1cos =-1.13585365213876817300E-11;
|
---|
52 | const double C2cos = 2.08757008419747316778E-9;
|
---|
53 | const double C3cos =-2.75573141792967388112E-7;
|
---|
54 | const double C4cos = 2.48015872888517045348E-5;
|
---|
55 | const double C5cos =-1.38888888888730564116E-3;
|
---|
56 | const double C6cos = 4.16666666666665929218E-2;
|
---|
57 |
|
---|
58 | const double DP1 = 7.853981554508209228515625E-1;
|
---|
59 | const double DP2 = 7.94662735614792836714E-9;
|
---|
60 | const double DP3 = 3.06161699786838294307E-17;
|
---|
61 |
|
---|
62 | // single precision constants
|
---|
63 |
|
---|
64 | const float DP1F = 0.78515625;
|
---|
65 | const float DP2F = 2.4187564849853515625e-4;
|
---|
66 | const float DP3F = 3.77489497744594108e-8;
|
---|
67 |
|
---|
68 | const float T24M1 = 16777215.;
|
---|
69 |
|
---|
70 | //------------------------------------------------------------------------------
|
---|
71 |
|
---|
72 | inline double get_sin_px(const double x){
|
---|
73 | double px=C1sin;
|
---|
74 | px *= x;
|
---|
75 | px += C2sin;
|
---|
76 | px *= x;
|
---|
77 | px += C3sin;
|
---|
78 | px *= x;
|
---|
79 | px += C4sin;
|
---|
80 | px *= x;
|
---|
81 | px += C5sin;
|
---|
82 | px *= x;
|
---|
83 | px += C6sin;
|
---|
84 | return px;
|
---|
85 | }
|
---|
86 |
|
---|
87 | //------------------------------------------------------------------------------
|
---|
88 |
|
---|
89 | inline double get_cos_px(const double x){
|
---|
90 | double px=C1cos;
|
---|
91 | px *= x;
|
---|
92 | px += C2cos;
|
---|
93 | px *= x;
|
---|
94 | px += C3cos;
|
---|
95 | px *= x;
|
---|
96 | px += C4cos;
|
---|
97 | px *= x;
|
---|
98 | px += C5cos;
|
---|
99 | px *= x;
|
---|
100 | px += C6cos;
|
---|
101 | return px;
|
---|
102 | }
|
---|
103 |
|
---|
104 |
|
---|
105 | //------------------------------------------------------------------------------
|
---|
106 | /// Reduce to 0 to 45
|
---|
107 | inline double reduce2quadrant(double x, int32_t& quad) {
|
---|
108 |
|
---|
109 | x = fabs(x);
|
---|
110 | quad = int (ONEOPIO4 * x); // always positive, so (int) == std::floor
|
---|
111 | quad = (quad+1) & (~1);
|
---|
112 | const double y = double (quad);
|
---|
113 | // Extended precision modular arithmetic
|
---|
114 | return ((x - y * DP1) - y * DP2) - y * DP3;
|
---|
115 | }
|
---|
116 |
|
---|
117 | //------------------------------------------------------------------------------
|
---|
118 | /// Sincos only for -45deg < x < 45deg
|
---|
119 | inline void fast_sincos_m45_45( const double z, double & s, double &c ) {
|
---|
120 |
|
---|
121 | double zz = z * z;
|
---|
122 | s = z + z * zz * get_sin_px(zz);
|
---|
123 | c = 1.0 - zz * .5 + zz * zz * get_cos_px(zz);
|
---|
124 | }
|
---|
125 |
|
---|
126 |
|
---|
127 | //------------------------------------------------------------------------------
|
---|
128 |
|
---|
129 | } // End namespace details
|
---|
130 |
|
---|
131 | /// Double precision sincos
|
---|
132 | inline void fast_sincos( const double xx, double & s, double &c ) {
|
---|
133 | // I have to use doubles to make it vectorise...
|
---|
134 |
|
---|
135 | int j;
|
---|
136 | double x = details::reduce2quadrant(xx,j);
|
---|
137 | const double signS = (j&4);
|
---|
138 |
|
---|
139 | j-=2;
|
---|
140 |
|
---|
141 | const double signC = (j&4);
|
---|
142 | const double poly = j&2;
|
---|
143 |
|
---|
144 | details::fast_sincos_m45_45(x,s,c);
|
---|
145 |
|
---|
146 | //swap
|
---|
147 | if( poly==0 ) {
|
---|
148 | const double tmp = c;
|
---|
149 | c=s;
|
---|
150 | s=tmp;
|
---|
151 | }
|
---|
152 |
|
---|
153 | if(signC == 0.)
|
---|
154 | c = -c;
|
---|
155 | if(signS != 0.)
|
---|
156 | s = -s;
|
---|
157 | if (xx < 0.)
|
---|
158 | s = -s;
|
---|
159 |
|
---|
160 | }
|
---|
161 |
|
---|
162 |
|
---|
163 | // Single precision functions
|
---|
164 |
|
---|
165 | namespace details {
|
---|
166 | //------------------------------------------------------------------------------
|
---|
167 | /// Reduce to 0 to 45
|
---|
168 | inline float reduce2quadrant(float x, int & quad) {
|
---|
169 | /* make argument positive */
|
---|
170 | x = fabs(x);
|
---|
171 |
|
---|
172 | quad = int (ONEOPIO4F * x); /* integer part of x/PIO4 */
|
---|
173 |
|
---|
174 | quad = (quad+1) & (~1);
|
---|
175 | const float y = float(quad);
|
---|
176 | // quad &=4;
|
---|
177 | // Extended precision modular arithmetic
|
---|
178 | return ((x - y * DP1F) - y * DP2F) - y * DP3F;
|
---|
179 | }
|
---|
180 |
|
---|
181 |
|
---|
182 | //------------------------------------------------------------------------------
|
---|
183 |
|
---|
184 |
|
---|
185 |
|
---|
186 | /// Sincos only for -45deg < x < 45deg
|
---|
187 | inline void fast_sincosf_m45_45( const float x, float & s, float &c ) {
|
---|
188 |
|
---|
189 | float z = x * x;
|
---|
190 |
|
---|
191 | s = (((-1.9515295891E-4f * z
|
---|
192 | + 8.3321608736E-3f) * z
|
---|
193 | - 1.6666654611E-1f) * z * x)
|
---|
194 | + x;
|
---|
195 |
|
---|
196 | c = (( 2.443315711809948E-005f * z
|
---|
197 | - 1.388731625493765E-003f) * z
|
---|
198 | + 4.166664568298827E-002f) * z * z
|
---|
199 | - 0.5f * z + 1.0f;
|
---|
200 | }
|
---|
201 |
|
---|
202 | //------------------------------------------------------------------------------
|
---|
203 |
|
---|
204 | } // end details namespace
|
---|
205 |
|
---|
206 | /// Single precision sincos
|
---|
207 | inline void fast_sincosf( const float xx, float & s, float &c ) {
|
---|
208 |
|
---|
209 |
|
---|
210 | int j;
|
---|
211 | const float x = details::reduce2quadrant(xx,j);
|
---|
212 | int signS = (j&4);
|
---|
213 |
|
---|
214 | j-=2;
|
---|
215 |
|
---|
216 | const int signC = (j&4);
|
---|
217 | const int poly = j&2;
|
---|
218 |
|
---|
219 | float ls,lc;
|
---|
220 | details::fast_sincosf_m45_45(x,ls,lc);
|
---|
221 |
|
---|
222 | //swap
|
---|
223 | if( poly==0 ) {
|
---|
224 | const float tmp = lc;
|
---|
225 | lc=ls; ls=tmp;
|
---|
226 | }
|
---|
227 |
|
---|
228 | if(signC == 0) lc = -lc;
|
---|
229 | if(signS != 0) ls = -ls;
|
---|
230 | if (xx<0) ls = -ls;
|
---|
231 | c=lc;
|
---|
232 | s=ls;
|
---|
233 | }
|
---|
234 |
|
---|
235 |
|
---|
236 | } // end namespace vdt
|
---|
237 |
|
---|
238 | #endif
|
---|