1 | /*
|
---|
2 | * exp.h
|
---|
3 | * The basic idea is to exploit Pade polynomials.
|
---|
4 | * A lot of ideas were inspired by the cephes math library (by Stephen L. Moshier
|
---|
5 | * moshier@na-net.ornl.gov) as well as actual code.
|
---|
6 | * The Cephes library can be found here: http://www.netlib.org/cephes/
|
---|
7 | *
|
---|
8 | * Created on: Jun 23, 2012
|
---|
9 | * Author: Danilo Piparo, Thomas Hauth, Vincenzo Innocente
|
---|
10 | */
|
---|
11 |
|
---|
12 | /*
|
---|
13 | * VDT is free software: you can redistribute it and/or modify
|
---|
14 | * it under the terms of the GNU Lesser Public License as published by
|
---|
15 | * the Free Software Foundation, either version 3 of the License, or
|
---|
16 | * (at your option) any later version.
|
---|
17 | *
|
---|
18 | * This program is distributed in the hope that it will be useful,
|
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
21 | * GNU Lesser Public License for more details.
|
---|
22 | *
|
---|
23 | * You should have received a copy of the GNU Lesser Public License
|
---|
24 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
25 | */
|
---|
26 |
|
---|
27 | #ifndef _VDT_EXP_
|
---|
28 | #define _VDT_EXP_
|
---|
29 |
|
---|
30 | #include "vdtcore_common.h"
|
---|
31 | #include <limits>
|
---|
32 |
|
---|
33 | namespace vdt{
|
---|
34 |
|
---|
35 | namespace details{
|
---|
36 |
|
---|
37 | const double EXP_LIMIT = 708;
|
---|
38 |
|
---|
39 | const double PX1exp = 1.26177193074810590878E-4;
|
---|
40 | const double PX2exp = 3.02994407707441961300E-2;
|
---|
41 | const double PX3exp = 9.99999999999999999910E-1;
|
---|
42 | const double QX1exp = 3.00198505138664455042E-6;
|
---|
43 | const double QX2exp = 2.52448340349684104192E-3;
|
---|
44 | const double QX3exp = 2.27265548208155028766E-1;
|
---|
45 | const double QX4exp = 2.00000000000000000009E0;
|
---|
46 |
|
---|
47 | const double LOG2E = 1.4426950408889634073599; // 1/log(2)
|
---|
48 |
|
---|
49 | const float MAXLOGF = 88.72283905206835f;
|
---|
50 | const float MINLOGF = -88.f;
|
---|
51 |
|
---|
52 | const float C1F = 0.693359375f;
|
---|
53 | const float C2F = -2.12194440e-4f;
|
---|
54 |
|
---|
55 | const float PX1expf = 1.9875691500E-4f;
|
---|
56 | const float PX2expf =1.3981999507E-3f;
|
---|
57 | const float PX3expf =8.3334519073E-3f;
|
---|
58 | const float PX4expf =4.1665795894E-2f;
|
---|
59 | const float PX5expf =1.6666665459E-1f;
|
---|
60 | const float PX6expf =5.0000001201E-1f;
|
---|
61 |
|
---|
62 | const float LOG2EF = 1.44269504088896341f;
|
---|
63 |
|
---|
64 | }
|
---|
65 |
|
---|
66 | // Exp double precision --------------------------------------------------------
|
---|
67 |
|
---|
68 |
|
---|
69 | /// Exponential Function double precision
|
---|
70 | inline double fast_exp(double initial_x){
|
---|
71 |
|
---|
72 | double x = initial_x;
|
---|
73 | double px=details::fpfloor(details::LOG2E * x +0.5);
|
---|
74 |
|
---|
75 | const int32_t n = int32_t(px);
|
---|
76 |
|
---|
77 | x -= px * 6.93145751953125E-1;
|
---|
78 | x -= px * 1.42860682030941723212E-6;
|
---|
79 |
|
---|
80 | const double xx = x * x;
|
---|
81 |
|
---|
82 | // px = x * P(x**2).
|
---|
83 | px = details::PX1exp;
|
---|
84 | px *= xx;
|
---|
85 | px += details::PX2exp;
|
---|
86 | px *= xx;
|
---|
87 | px += details::PX3exp;
|
---|
88 | px *= x;
|
---|
89 |
|
---|
90 | // Evaluate Q(x**2).
|
---|
91 | double qx = details::QX1exp;
|
---|
92 | qx *= xx;
|
---|
93 | qx += details::QX2exp;
|
---|
94 | qx *= xx;
|
---|
95 | qx += details::QX3exp;
|
---|
96 | qx *= xx;
|
---|
97 | qx += details::QX4exp;
|
---|
98 |
|
---|
99 | // e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
|
---|
100 | x = px / (qx - px);
|
---|
101 | x = 1.0 + 2.0 * x;
|
---|
102 |
|
---|
103 | // Build 2^n in double.
|
---|
104 | x *= details::uint642dp(( ((uint64_t)n) +1023)<<52);
|
---|
105 |
|
---|
106 | if (initial_x > details::EXP_LIMIT)
|
---|
107 | x = std::numeric_limits<double>::infinity();
|
---|
108 | if (initial_x < -details::EXP_LIMIT)
|
---|
109 | x = 0.;
|
---|
110 |
|
---|
111 | return x;
|
---|
112 |
|
---|
113 | }
|
---|
114 |
|
---|
115 | // Exp single precision --------------------------------------------------------
|
---|
116 |
|
---|
117 | /// Exponential Function single precision
|
---|
118 | inline float fast_expf(float initial_x) {
|
---|
119 |
|
---|
120 | float x = initial_x;
|
---|
121 |
|
---|
122 | float z = details::fpfloor( details::LOG2EF * x +0.5f ); /* floor() truncates toward -infinity. */
|
---|
123 |
|
---|
124 | x -= z * details::C1F;
|
---|
125 | x -= z * details::C2F;
|
---|
126 | const int32_t n = int32_t ( z );
|
---|
127 |
|
---|
128 | const float x2 = x * x;
|
---|
129 |
|
---|
130 | z = x*details::PX1expf;
|
---|
131 | z += details::PX2expf;
|
---|
132 | z *= x;
|
---|
133 | z += details::PX3expf;
|
---|
134 | z *= x;
|
---|
135 | z += details::PX4expf;
|
---|
136 | z *= x;
|
---|
137 | z += details::PX5expf;
|
---|
138 | z *= x;
|
---|
139 | z += details::PX6expf;
|
---|
140 | z *= x2;
|
---|
141 | z += x + 1.0f;
|
---|
142 |
|
---|
143 | /* multiply by power of 2 */
|
---|
144 | z *= details::uint322sp((n+0x7f)<<23);
|
---|
145 |
|
---|
146 | if (initial_x > details::MAXLOGF) z=std::numeric_limits<float>::infinity();
|
---|
147 | if (initial_x < details::MINLOGF) z=0.f;
|
---|
148 |
|
---|
149 | return z;
|
---|
150 |
|
---|
151 | }
|
---|
152 |
|
---|
153 | //------------------------------------------------------------------------------
|
---|
154 |
|
---|
155 | } // end namespace vdt
|
---|
156 |
|
---|
157 | #endif
|
---|