1 | /*
|
---|
2 | * Copyright (c) 2000-2012 Chih-Chung Chang and Chih-Jen Lin
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * 1. Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | *
|
---|
12 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | *
|
---|
16 | * 3. Neither name of copyright holders nor the names of its contributors
|
---|
17 | * may be used to endorse or promote products derived from this software
|
---|
18 | * without specific prior written permission.
|
---|
19 | *
|
---|
20 | *
|
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
22 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
23 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
24 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
|
---|
25 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
---|
26 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
---|
27 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
---|
28 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
---|
29 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
---|
30 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
---|
31 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
32 | *
|
---|
33 | * C# port from the original java sources by Gabriel Kronberger (Sept. 2012)
|
---|
34 | */
|
---|
35 |
|
---|
36 | using System.Globalization;
|
---|
37 | using System.IO;
|
---|
38 | using System.Linq;
|
---|
39 | using System.Threading;
|
---|
40 |
|
---|
41 | namespace LibSVM {
|
---|
42 | //
|
---|
43 | // Kernel Cache
|
---|
44 | //
|
---|
45 | // l is the number of total data items
|
---|
46 | // size is the cache size limit in bytes
|
---|
47 | //
|
---|
48 |
|
---|
49 | using System;
|
---|
50 |
|
---|
51 | class Cache {
|
---|
52 | private readonly int l;
|
---|
53 | private long size;
|
---|
54 | private sealed class head_t {
|
---|
55 | public head_t prev, next; // a cicular list
|
---|
56 | public float[] data;
|
---|
57 | public int len; // data[0,len) is cached in this entry
|
---|
58 | }
|
---|
59 | private readonly head_t[] head;
|
---|
60 | private head_t lru_head;
|
---|
61 |
|
---|
62 | public Cache(int l_, long size_) {
|
---|
63 | l = l_;
|
---|
64 | size = size_;
|
---|
65 | head = new head_t[l];
|
---|
66 | for (int i = 0; i < l; i++) head[i] = new head_t();
|
---|
67 | size /= 4;
|
---|
68 | size -= l * (16 / 4); // sizeof(head_t) == 16
|
---|
69 | size = Math.Max(size, 2 * (long)l); // cache must be large enough for two columns
|
---|
70 | lru_head = new head_t();
|
---|
71 | lru_head.next = lru_head.prev = lru_head;
|
---|
72 | }
|
---|
73 |
|
---|
74 | private void lru_delete(head_t h) {
|
---|
75 | // delete from current location
|
---|
76 | h.prev.next = h.next;
|
---|
77 | h.next.prev = h.prev;
|
---|
78 | }
|
---|
79 |
|
---|
80 | private void lru_insert(head_t h) {
|
---|
81 | // insert to last position
|
---|
82 | h.next = lru_head;
|
---|
83 | h.prev = lru_head.prev;
|
---|
84 | h.prev.next = h;
|
---|
85 | h.next.prev = h;
|
---|
86 | }
|
---|
87 |
|
---|
88 | // request data [0,len)
|
---|
89 | // return some position p where [p,len) need to be filled
|
---|
90 | // (p >= len if nothing needs to be filled)
|
---|
91 | // java: simulate pointer using single-element array
|
---|
92 | public int get_data(int index, float[][] data, int len) {
|
---|
93 | head_t h = head[index];
|
---|
94 | if (h.len > 0) lru_delete(h);
|
---|
95 | int more = len - h.len;
|
---|
96 |
|
---|
97 | if (more > 0) {
|
---|
98 | // free old space
|
---|
99 | while (size < more) {
|
---|
100 | head_t old = lru_head.next;
|
---|
101 | lru_delete(old);
|
---|
102 | size += old.len;
|
---|
103 | old.data = null;
|
---|
104 | old.len = 0;
|
---|
105 | }
|
---|
106 |
|
---|
107 | // allocate new space
|
---|
108 | float[] new_data = new float[len];
|
---|
109 | if (h.data != null) {
|
---|
110 | Array.Copy(h.data, 0, new_data, 0, h.len);
|
---|
111 | }
|
---|
112 | h.data = new_data;
|
---|
113 | size -= more; { int _ = h.len; h.len = len; len = _; }
|
---|
114 | }
|
---|
115 |
|
---|
116 | lru_insert(h);
|
---|
117 | data[0] = h.data;
|
---|
118 | return len;
|
---|
119 | }
|
---|
120 |
|
---|
121 | public void swap_index(int i, int j) {
|
---|
122 | if (i == j) return;
|
---|
123 |
|
---|
124 | if (head[i].len > 0) lru_delete(head[i]);
|
---|
125 | if (head[j].len > 0) lru_delete(head[j]); { float[] _ = head[i].data; head[i].data = head[j].data; head[j].data = _; }
|
---|
126 | { int _ = head[i].len; head[i].len = head[j].len; head[j].len = _; }
|
---|
127 | if (head[i].len > 0) lru_insert(head[i]);
|
---|
128 | if (head[j].len > 0) lru_insert(head[j]);
|
---|
129 |
|
---|
130 | if (i > j) { int _ = i; i = j; j = _; }
|
---|
131 | for (head_t h = lru_head.next; h != lru_head; h = h.next) {
|
---|
132 | if (h.len > i) {
|
---|
133 | if (h.len > j) { float _ = h.data[i]; h.data[i] = h.data[j]; h.data[j] = _; } else {
|
---|
134 | // give up
|
---|
135 | lru_delete(h);
|
---|
136 | size += h.len;
|
---|
137 | h.data = null;
|
---|
138 | h.len = 0;
|
---|
139 | }
|
---|
140 | }
|
---|
141 | }
|
---|
142 | }
|
---|
143 | }
|
---|
144 |
|
---|
145 | //
|
---|
146 | // Kernel evaluation
|
---|
147 | //
|
---|
148 | // the static method k_function is for doing single kernel evaluation
|
---|
149 | // the constructor of Kernel prepares to calculate the l*l kernel matrix
|
---|
150 | // the member function get_Q is for getting one column from the Q Matrix
|
---|
151 | //
|
---|
152 | abstract class QMatrix {
|
---|
153 | public abstract float[] get_Q(int column, int len);
|
---|
154 | public abstract double[] get_QD();
|
---|
155 | public abstract void swap_index(int i, int j);
|
---|
156 | };
|
---|
157 |
|
---|
158 | abstract class Kernel : QMatrix {
|
---|
159 | private svm_node[][] x;
|
---|
160 | private readonly double[] x_square;
|
---|
161 |
|
---|
162 | // svm_parameter
|
---|
163 | private readonly int kernel_type;
|
---|
164 | private readonly int degree;
|
---|
165 | private readonly double gamma;
|
---|
166 | private readonly double coef0;
|
---|
167 |
|
---|
168 | public override abstract float[] get_Q(int column, int len);
|
---|
169 | public override abstract double[] get_QD();
|
---|
170 |
|
---|
171 | public override void swap_index(int i, int j) {
|
---|
172 | { svm_node[] _ = x[i]; x[i] = x[j]; x[j] = _; }
|
---|
173 | if (x_square != null) { double _ = x_square[i]; x_square[i] = x_square[j]; x_square[j] = _; }
|
---|
174 | }
|
---|
175 |
|
---|
176 | private static double powi(double @base, int times) {
|
---|
177 | double tmp = @base, ret = 1.0;
|
---|
178 |
|
---|
179 | for (int t = times; t > 0; t /= 2) {
|
---|
180 | if (t % 2 == 1) ret *= tmp;
|
---|
181 | tmp = tmp * tmp;
|
---|
182 | }
|
---|
183 | return ret;
|
---|
184 | }
|
---|
185 |
|
---|
186 | protected virtual double kernel_function(int i, int j) {
|
---|
187 | switch (kernel_type) {
|
---|
188 | case svm_parameter.LINEAR:
|
---|
189 | return dot(x[i], x[j]);
|
---|
190 | case svm_parameter.POLY:
|
---|
191 | return powi(gamma * dot(x[i], x[j]) + coef0, degree);
|
---|
192 | case svm_parameter.RBF:
|
---|
193 | return Math.Exp(-gamma * (x_square[i] + x_square[j] - 2 * dot(x[i], x[j])));
|
---|
194 | case svm_parameter.SIGMOID:
|
---|
195 | return Math.Tanh(gamma * dot(x[i], x[j]) + coef0);
|
---|
196 | case svm_parameter.PRECOMPUTED:
|
---|
197 | return x[i][(int)(x[j][0].value)].value;
|
---|
198 | default:
|
---|
199 | return 0; // java
|
---|
200 | }
|
---|
201 | }
|
---|
202 |
|
---|
203 | public Kernel(int l, svm_node[][] x_, svm_parameter param) {
|
---|
204 | this.kernel_type = param.kernel_type;
|
---|
205 | this.degree = param.degree;
|
---|
206 | this.gamma = param.gamma;
|
---|
207 | this.coef0 = param.coef0;
|
---|
208 |
|
---|
209 | x = (svm_node[][])x_.Clone();
|
---|
210 |
|
---|
211 | if (kernel_type == svm_parameter.RBF) {
|
---|
212 | x_square = new double[l];
|
---|
213 | for (int i = 0; i < l; i++)
|
---|
214 | x_square[i] = dot(x[i], x[i]);
|
---|
215 | } else x_square = null;
|
---|
216 | }
|
---|
217 |
|
---|
218 | static double dot(svm_node[] x, svm_node[] y) {
|
---|
219 | double sum = 0;
|
---|
220 | int xlen = x.Length;
|
---|
221 | int ylen = y.Length;
|
---|
222 | int i = 0;
|
---|
223 | int j = 0;
|
---|
224 | while (i < xlen && j < ylen) {
|
---|
225 | if (x[i].index == y[j].index)
|
---|
226 | sum += x[i++].value * y[j++].value;
|
---|
227 | else {
|
---|
228 | if (x[i].index > y[j].index)
|
---|
229 | ++j;
|
---|
230 | else
|
---|
231 | ++i;
|
---|
232 | }
|
---|
233 | }
|
---|
234 | return sum;
|
---|
235 | }
|
---|
236 |
|
---|
237 | public static double k_function(svm_node[] x, svm_node[] y,
|
---|
238 | svm_parameter param) {
|
---|
239 | switch (param.kernel_type) {
|
---|
240 | case svm_parameter.LINEAR:
|
---|
241 | return dot(x, y);
|
---|
242 | case svm_parameter.POLY:
|
---|
243 | return powi(param.gamma * dot(x, y) + param.coef0, param.degree);
|
---|
244 | case svm_parameter.RBF: {
|
---|
245 | double sum = 0;
|
---|
246 | int xlen = x.Length;
|
---|
247 | int ylen = y.Length;
|
---|
248 | int i = 0;
|
---|
249 | int j = 0;
|
---|
250 | while (i < xlen && j < ylen) {
|
---|
251 | if (x[i].index == y[j].index) {
|
---|
252 | double d = x[i++].value - y[j++].value;
|
---|
253 | sum += d * d;
|
---|
254 | } else if (x[i].index > y[j].index) {
|
---|
255 | sum += y[j].value * y[j].value;
|
---|
256 | ++j;
|
---|
257 | } else {
|
---|
258 | sum += x[i].value * x[i].value;
|
---|
259 | ++i;
|
---|
260 | }
|
---|
261 | }
|
---|
262 |
|
---|
263 | while (i < xlen) {
|
---|
264 | sum += x[i].value * x[i].value;
|
---|
265 | ++i;
|
---|
266 | }
|
---|
267 |
|
---|
268 | while (j < ylen) {
|
---|
269 | sum += y[j].value * y[j].value;
|
---|
270 | ++j;
|
---|
271 | }
|
---|
272 |
|
---|
273 | return Math.Exp(-param.gamma * sum);
|
---|
274 | }
|
---|
275 | case svm_parameter.SIGMOID:
|
---|
276 | return Math.Tanh(param.gamma * dot(x, y) + param.coef0);
|
---|
277 | case svm_parameter.PRECOMPUTED:
|
---|
278 | return x[(int)(y[0].value)].value;
|
---|
279 | default:
|
---|
280 | return 0; // java
|
---|
281 | }
|
---|
282 | }
|
---|
283 | }
|
---|
284 |
|
---|
285 | // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
|
---|
286 | // Solves:
|
---|
287 | //
|
---|
288 | // min 0.5(\alpha^T Q \alpha) + p^T \alpha
|
---|
289 | //
|
---|
290 | // y^T \alpha = \delta
|
---|
291 | // y_i = +1 or -1
|
---|
292 | // 0 <= alpha_i <= Cp for y_i = 1
|
---|
293 | // 0 <= alpha_i <= Cn for y_i = -1
|
---|
294 | //
|
---|
295 | // Given:
|
---|
296 | //
|
---|
297 | // Q, p, y, Cp, Cn, and an initial feasible point \alpha
|
---|
298 | // l is the size of vectors and matrices
|
---|
299 | // eps is the stopping tolerance
|
---|
300 | //
|
---|
301 | // solution will be put in \alpha, objective value will be put in obj
|
---|
302 | //
|
---|
303 | class Solver {
|
---|
304 | protected int active_size;
|
---|
305 | protected short[] y;
|
---|
306 | protected double[] G; // gradient of objective function
|
---|
307 | protected const byte LOWER_BOUND = 0;
|
---|
308 | protected const byte UPPER_BOUND = 1;
|
---|
309 | protected const byte FREE = 2;
|
---|
310 | protected byte[] alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE
|
---|
311 | protected double[] alpha;
|
---|
312 | protected QMatrix Q;
|
---|
313 | protected double[] QD;
|
---|
314 | protected double eps;
|
---|
315 | protected double Cp, Cn;
|
---|
316 | protected double[] p;
|
---|
317 | protected int[] active_set;
|
---|
318 | protected double[] G_bar; // gradient, if we treat free variables as 0
|
---|
319 | protected int l;
|
---|
320 | protected bool unshrink; // XXX
|
---|
321 |
|
---|
322 | protected const double INF = double.PositiveInfinity;
|
---|
323 |
|
---|
324 | protected virtual double get_C(int i) {
|
---|
325 | return (y[i] > 0) ? Cp : Cn;
|
---|
326 | }
|
---|
327 | protected virtual void update_alpha_status(int i) {
|
---|
328 | if (alpha[i] >= get_C(i))
|
---|
329 | alpha_status[i] = UPPER_BOUND;
|
---|
330 | else if (alpha[i] <= 0)
|
---|
331 | alpha_status[i] = LOWER_BOUND;
|
---|
332 | else alpha_status[i] = FREE;
|
---|
333 | }
|
---|
334 | protected virtual bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
|
---|
335 | protected virtual bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
|
---|
336 | protected virtual bool is_free(int i) { return alpha_status[i] == FREE; }
|
---|
337 |
|
---|
338 | // java: information about solution except alpha,
|
---|
339 | // because we cannot return multiple values otherwise...
|
---|
340 | public class SolutionInfo {
|
---|
341 | public double obj;
|
---|
342 | public double rho;
|
---|
343 | public double upper_bound_p;
|
---|
344 | public double upper_bound_n;
|
---|
345 | public double r; // for Solver_NU
|
---|
346 | }
|
---|
347 |
|
---|
348 | protected virtual void swap_index(int i, int j) {
|
---|
349 | Q.swap_index(i, j); { short _ = y[i]; y[i] = y[j]; y[j] = _; }
|
---|
350 | { double _ = G[i]; G[i] = G[j]; G[j] = _; }
|
---|
351 | { byte _ = alpha_status[i]; alpha_status[i] = alpha_status[j]; alpha_status[j] = _; }
|
---|
352 | { double _ = alpha[i]; alpha[i] = alpha[j]; alpha[j] = _; }
|
---|
353 | { double _ = p[i]; p[i] = p[j]; p[j] = _; }
|
---|
354 | { int _ = active_set[i]; active_set[i] = active_set[j]; active_set[j] = _; }
|
---|
355 | { double _ = G_bar[i]; G_bar[i] = G_bar[j]; G_bar[j] = _; }
|
---|
356 | }
|
---|
357 |
|
---|
358 | protected virtual void reconstruct_gradient() {
|
---|
359 | // reconstruct inactive elements of G from G_bar and free variables
|
---|
360 |
|
---|
361 | if (active_size == l) return;
|
---|
362 |
|
---|
363 | int i, j;
|
---|
364 | int nr_free = 0;
|
---|
365 |
|
---|
366 | for (j = active_size; j < l; j++)
|
---|
367 | G[j] = G_bar[j] + p[j];
|
---|
368 |
|
---|
369 | for (j = 0; j < active_size; j++)
|
---|
370 | if (is_free(j))
|
---|
371 | nr_free++;
|
---|
372 |
|
---|
373 | if (2 * nr_free < active_size)
|
---|
374 | svm.info("WARNING: using -h 0 may be faster" + Environment.NewLine + Environment.NewLine);
|
---|
375 |
|
---|
376 | if (nr_free * l > 2 * active_size * (l - active_size)) {
|
---|
377 | for (i = active_size; i < l; i++) {
|
---|
378 | float[] Q_i = Q.get_Q(i, active_size);
|
---|
379 | for (j = 0; j < active_size; j++)
|
---|
380 | if (is_free(j))
|
---|
381 | G[i] += alpha[j] * Q_i[j];
|
---|
382 | }
|
---|
383 | } else {
|
---|
384 | for (i = 0; i < active_size; i++)
|
---|
385 | if (is_free(i)) {
|
---|
386 | float[] Q_i = Q.get_Q(i, l);
|
---|
387 | double alpha_i = alpha[i];
|
---|
388 | for (j = active_size; j < l; j++)
|
---|
389 | G[j] += alpha_i * Q_i[j];
|
---|
390 | }
|
---|
391 | }
|
---|
392 | }
|
---|
393 |
|
---|
394 | public virtual void Solve(int l, QMatrix Q, double[] p_, short[] y_,
|
---|
395 | double[] alpha_, double Cp, double Cn, double eps, SolutionInfo si, int shrinking) {
|
---|
396 | this.l = l;
|
---|
397 | this.Q = Q;
|
---|
398 | QD = Q.get_QD();
|
---|
399 | p = (double[])p_.Clone();
|
---|
400 | y = (short[])y_.Clone();
|
---|
401 | alpha = (double[])alpha_.Clone();
|
---|
402 | this.Cp = Cp;
|
---|
403 | this.Cn = Cn;
|
---|
404 | this.eps = eps;
|
---|
405 | this.unshrink = false;
|
---|
406 |
|
---|
407 | // initialize alpha_status
|
---|
408 | {
|
---|
409 | alpha_status = new byte[l];
|
---|
410 | for (int i = 0; i < l; i++)
|
---|
411 | update_alpha_status(i);
|
---|
412 | }
|
---|
413 |
|
---|
414 | // initialize active set (for shrinking)
|
---|
415 | {
|
---|
416 | active_set = new int[l];
|
---|
417 | for (int i = 0; i < l; i++)
|
---|
418 | active_set[i] = i;
|
---|
419 | active_size = l;
|
---|
420 | }
|
---|
421 |
|
---|
422 | // initialize gradient
|
---|
423 | {
|
---|
424 | G = new double[l];
|
---|
425 | G_bar = new double[l];
|
---|
426 | int i;
|
---|
427 | for (i = 0; i < l; i++) {
|
---|
428 | G[i] = p[i];
|
---|
429 | G_bar[i] = 0;
|
---|
430 | }
|
---|
431 | for (i = 0; i < l; i++)
|
---|
432 | if (!is_lower_bound(i)) {
|
---|
433 | float[] Q_i = Q.get_Q(i, l);
|
---|
434 | double alpha_i = alpha[i];
|
---|
435 | int j;
|
---|
436 | for (j = 0; j < l; j++)
|
---|
437 | G[j] += alpha_i * Q_i[j];
|
---|
438 | if (is_upper_bound(i))
|
---|
439 | for (j = 0; j < l; j++)
|
---|
440 | G_bar[j] += get_C(i) * Q_i[j];
|
---|
441 | }
|
---|
442 | }
|
---|
443 |
|
---|
444 | // optimization step
|
---|
445 |
|
---|
446 | int iter = 0;
|
---|
447 | int max_iter = Math.Max(10000000, l > int.MaxValue / 100 ? int.MaxValue : 100 * l);
|
---|
448 | int counter = Math.Min(l, 1000) + 1;
|
---|
449 | int[] working_set = new int[2];
|
---|
450 |
|
---|
451 | while (iter < max_iter) {
|
---|
452 | // show progress and do shrinking
|
---|
453 |
|
---|
454 | if (--counter == 0) {
|
---|
455 | counter = Math.Min(l, 1000);
|
---|
456 | if (shrinking != 0) do_shrinking();
|
---|
457 | svm.info(".");
|
---|
458 | }
|
---|
459 |
|
---|
460 | if (select_working_set(working_set) != 0) {
|
---|
461 | // reconstruct the whole gradient
|
---|
462 | reconstruct_gradient();
|
---|
463 | // reset active set size and check
|
---|
464 | active_size = l;
|
---|
465 | svm.info("*");
|
---|
466 | if (select_working_set(working_set) != 0)
|
---|
467 | break;
|
---|
468 | else
|
---|
469 | counter = 1; // do shrinking next iteration
|
---|
470 | }
|
---|
471 |
|
---|
472 | int i = working_set[0];
|
---|
473 | int j = working_set[1];
|
---|
474 |
|
---|
475 | ++iter;
|
---|
476 |
|
---|
477 | // update alpha[i] and alpha[j], handle bounds carefully
|
---|
478 |
|
---|
479 | float[] Q_i = Q.get_Q(i, active_size);
|
---|
480 | float[] Q_j = Q.get_Q(j, active_size);
|
---|
481 |
|
---|
482 | double C_i = get_C(i);
|
---|
483 | double C_j = get_C(j);
|
---|
484 |
|
---|
485 | double old_alpha_i = alpha[i];
|
---|
486 | double old_alpha_j = alpha[j];
|
---|
487 |
|
---|
488 | if (y[i] != y[j]) {
|
---|
489 | double quad_coef = QD[i] + QD[j] + 2 * Q_i[j];
|
---|
490 | if (quad_coef <= 0)
|
---|
491 | quad_coef = 1e-12;
|
---|
492 | double delta = (-G[i] - G[j]) / quad_coef;
|
---|
493 | double diff = alpha[i] - alpha[j];
|
---|
494 | alpha[i] += delta;
|
---|
495 | alpha[j] += delta;
|
---|
496 |
|
---|
497 | if (diff > 0) {
|
---|
498 | if (alpha[j] < 0) {
|
---|
499 | alpha[j] = 0;
|
---|
500 | alpha[i] = diff;
|
---|
501 | }
|
---|
502 | } else {
|
---|
503 | if (alpha[i] < 0) {
|
---|
504 | alpha[i] = 0;
|
---|
505 | alpha[j] = -diff;
|
---|
506 | }
|
---|
507 | }
|
---|
508 | if (diff > C_i - C_j) {
|
---|
509 | if (alpha[i] > C_i) {
|
---|
510 | alpha[i] = C_i;
|
---|
511 | alpha[j] = C_i - diff;
|
---|
512 | }
|
---|
513 | } else {
|
---|
514 | if (alpha[j] > C_j) {
|
---|
515 | alpha[j] = C_j;
|
---|
516 | alpha[i] = C_j + diff;
|
---|
517 | }
|
---|
518 | }
|
---|
519 | } else {
|
---|
520 | double quad_coef = QD[i] + QD[j] - 2 * Q_i[j];
|
---|
521 | if (quad_coef <= 0)
|
---|
522 | quad_coef = 1e-12;
|
---|
523 | double delta = (G[i] - G[j]) / quad_coef;
|
---|
524 | double sum = alpha[i] + alpha[j];
|
---|
525 | alpha[i] -= delta;
|
---|
526 | alpha[j] += delta;
|
---|
527 |
|
---|
528 | if (sum > C_i) {
|
---|
529 | if (alpha[i] > C_i) {
|
---|
530 | alpha[i] = C_i;
|
---|
531 | alpha[j] = sum - C_i;
|
---|
532 | }
|
---|
533 | } else {
|
---|
534 | if (alpha[j] < 0) {
|
---|
535 | alpha[j] = 0;
|
---|
536 | alpha[i] = sum;
|
---|
537 | }
|
---|
538 | }
|
---|
539 | if (sum > C_j) {
|
---|
540 | if (alpha[j] > C_j) {
|
---|
541 | alpha[j] = C_j;
|
---|
542 | alpha[i] = sum - C_j;
|
---|
543 | }
|
---|
544 | } else {
|
---|
545 | if (alpha[i] < 0) {
|
---|
546 | alpha[i] = 0;
|
---|
547 | alpha[j] = sum;
|
---|
548 | }
|
---|
549 | }
|
---|
550 | }
|
---|
551 |
|
---|
552 | // update G
|
---|
553 |
|
---|
554 | double delta_alpha_i = alpha[i] - old_alpha_i;
|
---|
555 | double delta_alpha_j = alpha[j] - old_alpha_j;
|
---|
556 |
|
---|
557 | for (int k = 0; k < active_size; k++) {
|
---|
558 | G[k] += Q_i[k] * delta_alpha_i + Q_j[k] * delta_alpha_j;
|
---|
559 | }
|
---|
560 |
|
---|
561 | // update alpha_status and G_bar
|
---|
562 |
|
---|
563 | {
|
---|
564 | bool ui = is_upper_bound(i);
|
---|
565 | bool uj = is_upper_bound(j);
|
---|
566 | update_alpha_status(i);
|
---|
567 | update_alpha_status(j);
|
---|
568 | int k;
|
---|
569 | if (ui != is_upper_bound(i)) {
|
---|
570 | Q_i = Q.get_Q(i, l);
|
---|
571 | if (ui)
|
---|
572 | for (k = 0; k < l; k++)
|
---|
573 | G_bar[k] -= C_i * Q_i[k];
|
---|
574 | else
|
---|
575 | for (k = 0; k < l; k++)
|
---|
576 | G_bar[k] += C_i * Q_i[k];
|
---|
577 | }
|
---|
578 |
|
---|
579 | if (uj != is_upper_bound(j)) {
|
---|
580 | Q_j = Q.get_Q(j, l);
|
---|
581 | if (uj)
|
---|
582 | for (k = 0; k < l; k++)
|
---|
583 | G_bar[k] -= C_j * Q_j[k];
|
---|
584 | else
|
---|
585 | for (k = 0; k < l; k++)
|
---|
586 | G_bar[k] += C_j * Q_j[k];
|
---|
587 | }
|
---|
588 | }
|
---|
589 |
|
---|
590 | }
|
---|
591 |
|
---|
592 | if (iter >= max_iter) {
|
---|
593 | if (active_size < l) {
|
---|
594 | // reconstruct the whole gradient to calculate objective value
|
---|
595 | reconstruct_gradient();
|
---|
596 | active_size = l;
|
---|
597 | svm.info("*");
|
---|
598 | }
|
---|
599 | svm.info("WARNING: reaching max number of iterations" + Environment.NewLine);
|
---|
600 | }
|
---|
601 |
|
---|
602 | // calculate rho
|
---|
603 |
|
---|
604 | si.rho = calculate_rho();
|
---|
605 |
|
---|
606 | // calculate objective value
|
---|
607 | {
|
---|
608 | double v = 0;
|
---|
609 | int i;
|
---|
610 | for (i = 0; i < l; i++)
|
---|
611 | v += alpha[i] * (G[i] + p[i]);
|
---|
612 |
|
---|
613 | si.obj = v / 2;
|
---|
614 | }
|
---|
615 |
|
---|
616 | // put back the solution
|
---|
617 | {
|
---|
618 | for (int i = 0; i < l; i++)
|
---|
619 | alpha_[active_set[i]] = alpha[i];
|
---|
620 | }
|
---|
621 |
|
---|
622 | si.upper_bound_p = Cp;
|
---|
623 | si.upper_bound_n = Cn;
|
---|
624 |
|
---|
625 | svm.info("optimization finished, #iter = " + iter + Environment.NewLine);
|
---|
626 | }
|
---|
627 |
|
---|
628 | // return 1 if already optimal, return 0 otherwise
|
---|
629 | protected virtual int select_working_set(int[] working_set) {
|
---|
630 | // return i,j such that
|
---|
631 | // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
|
---|
632 | // j: mimimizes the decrease of obj value
|
---|
633 | // (if quadratic coefficeint <= 0, replace it with tau)
|
---|
634 | // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
|
---|
635 |
|
---|
636 | double Gmax = -INF;
|
---|
637 | double Gmax2 = -INF;
|
---|
638 | int Gmax_idx = -1;
|
---|
639 | int Gmin_idx = -1;
|
---|
640 | double obj_diff_min = INF;
|
---|
641 |
|
---|
642 | for (int t = 0; t < active_size; t++)
|
---|
643 | if (y[t] == +1) {
|
---|
644 | if (!is_upper_bound(t))
|
---|
645 | if (-G[t] >= Gmax) {
|
---|
646 | Gmax = -G[t];
|
---|
647 | Gmax_idx = t;
|
---|
648 | }
|
---|
649 | } else {
|
---|
650 | if (!is_lower_bound(t))
|
---|
651 | if (G[t] >= Gmax) {
|
---|
652 | Gmax = G[t];
|
---|
653 | Gmax_idx = t;
|
---|
654 | }
|
---|
655 | }
|
---|
656 |
|
---|
657 | int i = Gmax_idx;
|
---|
658 | float[] Q_i = null;
|
---|
659 | if (i != -1) // null Q_i not accessed: Gmax=-INF if i=-1
|
---|
660 | Q_i = Q.get_Q(i, active_size);
|
---|
661 |
|
---|
662 | for (int j = 0; j < active_size; j++) {
|
---|
663 | if (y[j] == +1) {
|
---|
664 | if (!is_lower_bound(j)) {
|
---|
665 | double grad_diff = Gmax + G[j];
|
---|
666 | if (G[j] >= Gmax2)
|
---|
667 | Gmax2 = G[j];
|
---|
668 | if (grad_diff > 0) {
|
---|
669 | double obj_diff;
|
---|
670 | double quad_coef = QD[i] + QD[j] - 2.0 * y[i] * Q_i[j];
|
---|
671 | if (quad_coef > 0)
|
---|
672 | obj_diff = -(grad_diff * grad_diff) / quad_coef;
|
---|
673 | else
|
---|
674 | obj_diff = -(grad_diff * grad_diff) / 1e-12;
|
---|
675 |
|
---|
676 | if (obj_diff <= obj_diff_min) {
|
---|
677 | Gmin_idx = j;
|
---|
678 | obj_diff_min = obj_diff;
|
---|
679 | }
|
---|
680 | }
|
---|
681 | }
|
---|
682 | } else {
|
---|
683 | if (!is_upper_bound(j)) {
|
---|
684 | double grad_diff = Gmax - G[j];
|
---|
685 | if (-G[j] >= Gmax2)
|
---|
686 | Gmax2 = -G[j];
|
---|
687 | if (grad_diff > 0) {
|
---|
688 | double obj_diff;
|
---|
689 | double quad_coef = QD[i] + QD[j] + 2.0 * y[i] * Q_i[j];
|
---|
690 | if (quad_coef > 0)
|
---|
691 | obj_diff = -(grad_diff * grad_diff) / quad_coef;
|
---|
692 | else
|
---|
693 | obj_diff = -(grad_diff * grad_diff) / 1e-12;
|
---|
694 |
|
---|
695 | if (obj_diff <= obj_diff_min) {
|
---|
696 | Gmin_idx = j;
|
---|
697 | obj_diff_min = obj_diff;
|
---|
698 | }
|
---|
699 | }
|
---|
700 | }
|
---|
701 | }
|
---|
702 | }
|
---|
703 |
|
---|
704 | if (Gmax + Gmax2 < eps)
|
---|
705 | return 1;
|
---|
706 |
|
---|
707 | working_set[0] = Gmax_idx;
|
---|
708 | working_set[1] = Gmin_idx;
|
---|
709 | return 0;
|
---|
710 | }
|
---|
711 |
|
---|
712 | private bool be_shrunk(int i, double Gmax1, double Gmax2) {
|
---|
713 | if (is_upper_bound(i)) {
|
---|
714 | if (y[i] == +1)
|
---|
715 | return (-G[i] > Gmax1);
|
---|
716 | else
|
---|
717 | return (-G[i] > Gmax2);
|
---|
718 | } else if (is_lower_bound(i)) {
|
---|
719 | if (y[i] == +1)
|
---|
720 | return (G[i] > Gmax2);
|
---|
721 | else
|
---|
722 | return (G[i] > Gmax1);
|
---|
723 | } else
|
---|
724 | return (false);
|
---|
725 | }
|
---|
726 |
|
---|
727 | protected virtual void do_shrinking() {
|
---|
728 | int i;
|
---|
729 | double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) }
|
---|
730 | double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) }
|
---|
731 |
|
---|
732 | // find maximal violating pair first
|
---|
733 | for (i = 0; i < active_size; i++) {
|
---|
734 | if (y[i] == +1) {
|
---|
735 | if (!is_upper_bound(i)) {
|
---|
736 | if (-G[i] >= Gmax1)
|
---|
737 | Gmax1 = -G[i];
|
---|
738 | }
|
---|
739 | if (!is_lower_bound(i)) {
|
---|
740 | if (G[i] >= Gmax2)
|
---|
741 | Gmax2 = G[i];
|
---|
742 | }
|
---|
743 | } else {
|
---|
744 | if (!is_upper_bound(i)) {
|
---|
745 | if (-G[i] >= Gmax2)
|
---|
746 | Gmax2 = -G[i];
|
---|
747 | }
|
---|
748 | if (!is_lower_bound(i)) {
|
---|
749 | if (G[i] >= Gmax1)
|
---|
750 | Gmax1 = G[i];
|
---|
751 | }
|
---|
752 | }
|
---|
753 | }
|
---|
754 |
|
---|
755 | if (unshrink == false && Gmax1 + Gmax2 <= eps * 10) {
|
---|
756 | unshrink = true;
|
---|
757 | reconstruct_gradient();
|
---|
758 | active_size = l;
|
---|
759 | }
|
---|
760 |
|
---|
761 | for (i = 0; i < active_size; i++)
|
---|
762 | if (be_shrunk(i, Gmax1, Gmax2)) {
|
---|
763 | active_size--;
|
---|
764 | while (active_size > i) {
|
---|
765 | if (!be_shrunk(active_size, Gmax1, Gmax2)) {
|
---|
766 | swap_index(i, active_size);
|
---|
767 | break;
|
---|
768 | }
|
---|
769 | active_size--;
|
---|
770 | }
|
---|
771 | }
|
---|
772 | }
|
---|
773 |
|
---|
774 | protected virtual double calculate_rho() {
|
---|
775 | double r;
|
---|
776 | int nr_free = 0;
|
---|
777 | double ub = INF, lb = -INF, sum_free = 0;
|
---|
778 | for (int i = 0; i < active_size; i++) {
|
---|
779 | double yG = y[i] * G[i];
|
---|
780 |
|
---|
781 | if (is_lower_bound(i)) {
|
---|
782 | if (y[i] > 0)
|
---|
783 | ub = Math.Min(ub, yG);
|
---|
784 | else
|
---|
785 | lb = Math.Max(lb, yG);
|
---|
786 | } else if (is_upper_bound(i)) {
|
---|
787 | if (y[i] < 0)
|
---|
788 | ub = Math.Min(ub, yG);
|
---|
789 | else
|
---|
790 | lb = Math.Max(lb, yG);
|
---|
791 | } else {
|
---|
792 | ++nr_free;
|
---|
793 | sum_free += yG;
|
---|
794 | }
|
---|
795 | }
|
---|
796 |
|
---|
797 | if (nr_free > 0)
|
---|
798 | r = sum_free / nr_free;
|
---|
799 | else
|
---|
800 | r = (ub + lb) / 2;
|
---|
801 |
|
---|
802 | return r;
|
---|
803 | }
|
---|
804 |
|
---|
805 | }
|
---|
806 |
|
---|
807 | //
|
---|
808 | // Solver for nu-svm classification and regression
|
---|
809 | //
|
---|
810 | // additional constraint: e^T \alpha = constant
|
---|
811 | //
|
---|
812 | internal sealed class Solver_NU : Solver {
|
---|
813 | private SolutionInfo si;
|
---|
814 |
|
---|
815 | public override void Solve(int l, QMatrix Q, double[] p, short[] y,
|
---|
816 | double[] alpha, double Cp, double Cn, double eps,
|
---|
817 | SolutionInfo si, int shrinking) {
|
---|
818 | this.si = si;
|
---|
819 | base.Solve(l, Q, p, y, alpha, Cp, Cn, eps, si, shrinking);
|
---|
820 | }
|
---|
821 |
|
---|
822 | // return 1 if already optimal, return 0 otherwise
|
---|
823 | protected override int select_working_set(int[] working_set) {
|
---|
824 | // return i,j such that y_i = y_j and
|
---|
825 | // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
|
---|
826 | // j: minimizes the decrease of obj value
|
---|
827 | // (if quadratic coefficeint <= 0, replace it with tau)
|
---|
828 | // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
|
---|
829 |
|
---|
830 | double Gmaxp = -INF;
|
---|
831 | double Gmaxp2 = -INF;
|
---|
832 | int Gmaxp_idx = -1;
|
---|
833 |
|
---|
834 | double Gmaxn = -INF;
|
---|
835 | double Gmaxn2 = -INF;
|
---|
836 | int Gmaxn_idx = -1;
|
---|
837 |
|
---|
838 | int Gmin_idx = -1;
|
---|
839 | double obj_diff_min = INF;
|
---|
840 |
|
---|
841 | for (int t = 0; t < active_size; t++)
|
---|
842 | if (y[t] == +1) {
|
---|
843 | if (!is_upper_bound(t))
|
---|
844 | if (-G[t] >= Gmaxp) {
|
---|
845 | Gmaxp = -G[t];
|
---|
846 | Gmaxp_idx = t;
|
---|
847 | }
|
---|
848 | } else {
|
---|
849 | if (!is_lower_bound(t))
|
---|
850 | if (G[t] >= Gmaxn) {
|
---|
851 | Gmaxn = G[t];
|
---|
852 | Gmaxn_idx = t;
|
---|
853 | }
|
---|
854 | }
|
---|
855 |
|
---|
856 | int ip = Gmaxp_idx;
|
---|
857 | int @in = Gmaxn_idx;
|
---|
858 | float[] Q_ip = null;
|
---|
859 | float[] Q_in = null;
|
---|
860 | if (ip != -1) // null Q_ip not accessed: Gmaxp=-INF if ip=-1
|
---|
861 | Q_ip = Q.get_Q(ip, active_size);
|
---|
862 | if (@in != -1)
|
---|
863 | Q_in = Q.get_Q(@in, active_size);
|
---|
864 |
|
---|
865 | for (int j = 0; j < active_size; j++) {
|
---|
866 | if (y[j] == +1) {
|
---|
867 | if (!is_lower_bound(j)) {
|
---|
868 | double grad_diff = Gmaxp + G[j];
|
---|
869 | if (G[j] >= Gmaxp2)
|
---|
870 | Gmaxp2 = G[j];
|
---|
871 | if (grad_diff > 0) {
|
---|
872 | double obj_diff;
|
---|
873 | double quad_coef = QD[ip] + QD[j] - 2 * Q_ip[j];
|
---|
874 | if (quad_coef > 0)
|
---|
875 | obj_diff = -(grad_diff * grad_diff) / quad_coef;
|
---|
876 | else
|
---|
877 | obj_diff = -(grad_diff * grad_diff) / 1e-12;
|
---|
878 |
|
---|
879 | if (obj_diff <= obj_diff_min) {
|
---|
880 | Gmin_idx = j;
|
---|
881 | obj_diff_min = obj_diff;
|
---|
882 | }
|
---|
883 | }
|
---|
884 | }
|
---|
885 | } else {
|
---|
886 | if (!is_upper_bound(j)) {
|
---|
887 | double grad_diff = Gmaxn - G[j];
|
---|
888 | if (-G[j] >= Gmaxn2)
|
---|
889 | Gmaxn2 = -G[j];
|
---|
890 | if (grad_diff > 0) {
|
---|
891 | double obj_diff;
|
---|
892 | double quad_coef = QD[@in] + QD[j] - 2 * Q_in[j];
|
---|
893 | if (quad_coef > 0)
|
---|
894 | obj_diff = -(grad_diff * grad_diff) / quad_coef;
|
---|
895 | else
|
---|
896 | obj_diff = -(grad_diff * grad_diff) / 1e-12;
|
---|
897 |
|
---|
898 | if (obj_diff <= obj_diff_min) {
|
---|
899 | Gmin_idx = j;
|
---|
900 | obj_diff_min = obj_diff;
|
---|
901 | }
|
---|
902 | }
|
---|
903 | }
|
---|
904 | }
|
---|
905 | }
|
---|
906 |
|
---|
907 | if (Math.Max(Gmaxp + Gmaxp2, Gmaxn + Gmaxn2) < eps)
|
---|
908 | return 1;
|
---|
909 |
|
---|
910 | if (y[Gmin_idx] == +1)
|
---|
911 | working_set[0] = Gmaxp_idx;
|
---|
912 | else
|
---|
913 | working_set[0] = Gmaxn_idx;
|
---|
914 | working_set[1] = Gmin_idx;
|
---|
915 |
|
---|
916 | return 0;
|
---|
917 | }
|
---|
918 |
|
---|
919 | private bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) {
|
---|
920 | if (is_upper_bound(i)) {
|
---|
921 | if (y[i] == +1)
|
---|
922 | return (-G[i] > Gmax1);
|
---|
923 | else
|
---|
924 | return (-G[i] > Gmax4);
|
---|
925 | } else if (is_lower_bound(i)) {
|
---|
926 | if (y[i] == +1)
|
---|
927 | return (G[i] > Gmax2);
|
---|
928 | else
|
---|
929 | return (G[i] > Gmax3);
|
---|
930 | } else
|
---|
931 | return (false);
|
---|
932 | }
|
---|
933 |
|
---|
934 | protected override void do_shrinking() {
|
---|
935 | double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
|
---|
936 | double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
|
---|
937 | double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
|
---|
938 | double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
|
---|
939 |
|
---|
940 | // find maximal violating pair first
|
---|
941 | int i;
|
---|
942 | for (i = 0; i < active_size; i++) {
|
---|
943 | if (!is_upper_bound(i)) {
|
---|
944 | if (y[i] == +1) {
|
---|
945 | if (-G[i] > Gmax1) Gmax1 = -G[i];
|
---|
946 | } else if (-G[i] > Gmax4) Gmax4 = -G[i];
|
---|
947 | }
|
---|
948 | if (!is_lower_bound(i)) {
|
---|
949 | if (y[i] == +1) {
|
---|
950 | if (G[i] > Gmax2) Gmax2 = G[i];
|
---|
951 | } else if (G[i] > Gmax3) Gmax3 = G[i];
|
---|
952 | }
|
---|
953 | }
|
---|
954 |
|
---|
955 | if (unshrink == false && Math.Max(Gmax1 + Gmax2, Gmax3 + Gmax4) <= eps * 10) {
|
---|
956 | unshrink = true;
|
---|
957 | reconstruct_gradient();
|
---|
958 | active_size = l;
|
---|
959 | }
|
---|
960 |
|
---|
961 | for (i = 0; i < active_size; i++)
|
---|
962 | if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4)) {
|
---|
963 | active_size--;
|
---|
964 | while (active_size > i) {
|
---|
965 | if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) {
|
---|
966 | swap_index(i, active_size);
|
---|
967 | break;
|
---|
968 | }
|
---|
969 | active_size--;
|
---|
970 | }
|
---|
971 | }
|
---|
972 | }
|
---|
973 |
|
---|
974 | protected override double calculate_rho() {
|
---|
975 | int nr_free1 = 0, nr_free2 = 0;
|
---|
976 | double ub1 = INF, ub2 = INF;
|
---|
977 | double lb1 = -INF, lb2 = -INF;
|
---|
978 | double sum_free1 = 0, sum_free2 = 0;
|
---|
979 |
|
---|
980 | for (int i = 0; i < active_size; i++) {
|
---|
981 | if (y[i] == +1) {
|
---|
982 | if (is_lower_bound(i))
|
---|
983 | ub1 = Math.Min(ub1, G[i]);
|
---|
984 | else if (is_upper_bound(i))
|
---|
985 | lb1 = Math.Max(lb1, G[i]);
|
---|
986 | else {
|
---|
987 | ++nr_free1;
|
---|
988 | sum_free1 += G[i];
|
---|
989 | }
|
---|
990 | } else {
|
---|
991 | if (is_lower_bound(i))
|
---|
992 | ub2 = Math.Min(ub2, G[i]);
|
---|
993 | else if (is_upper_bound(i))
|
---|
994 | lb2 = Math.Max(lb2, G[i]);
|
---|
995 | else {
|
---|
996 | ++nr_free2;
|
---|
997 | sum_free2 += G[i];
|
---|
998 | }
|
---|
999 | }
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | double r1, r2;
|
---|
1003 | if (nr_free1 > 0)
|
---|
1004 | r1 = sum_free1 / nr_free1;
|
---|
1005 | else
|
---|
1006 | r1 = (ub1 + lb1) / 2;
|
---|
1007 |
|
---|
1008 | if (nr_free2 > 0)
|
---|
1009 | r2 = sum_free2 / nr_free2;
|
---|
1010 | else
|
---|
1011 | r2 = (ub2 + lb2) / 2;
|
---|
1012 |
|
---|
1013 | si.r = (r1 + r2) / 2;
|
---|
1014 | return (r1 - r2) / 2;
|
---|
1015 | }
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | //
|
---|
1019 | // Q matrices for various formulations
|
---|
1020 | //
|
---|
1021 | class SVC_Q : Kernel {
|
---|
1022 | private readonly short[] y;
|
---|
1023 | private readonly Cache cache;
|
---|
1024 | private readonly double[] QD;
|
---|
1025 |
|
---|
1026 | public SVC_Q(svm_problem prob, svm_parameter param, short[] y_)
|
---|
1027 | : base(prob.l, prob.x, param) {
|
---|
1028 | y = (short[])y_.Clone();
|
---|
1029 | cache = new Cache(prob.l, (long)(param.cache_size * (1 << 20)));
|
---|
1030 | QD = new double[prob.l];
|
---|
1031 | for (int i = 0; i < prob.l; i++)
|
---|
1032 | QD[i] = kernel_function(i, i);
|
---|
1033 | }
|
---|
1034 |
|
---|
1035 | public override float[] get_Q(int i, int len) {
|
---|
1036 | float[][] data = new float[1][];
|
---|
1037 | int start, j;
|
---|
1038 | if ((start = cache.get_data(i, data, len)) < len) {
|
---|
1039 | for (j = start; j < len; j++)
|
---|
1040 | data[0][j] = (float)(y[i] * y[j] * kernel_function(i, j));
|
---|
1041 | }
|
---|
1042 | return data[0];
|
---|
1043 | }
|
---|
1044 |
|
---|
1045 | public override double[] get_QD() {
|
---|
1046 | return QD;
|
---|
1047 | }
|
---|
1048 |
|
---|
1049 | public override void swap_index(int i, int j) {
|
---|
1050 | cache.swap_index(i, j);
|
---|
1051 | base.swap_index(i, j); { short _ = y[i]; y[i] = y[j]; y[j] = _; }
|
---|
1052 | { double _ = QD[i]; QD[i] = QD[j]; QD[j] = _; }
|
---|
1053 | }
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 | class ONE_CLASS_Q : Kernel {
|
---|
1057 | private readonly Cache cache;
|
---|
1058 | private readonly double[] QD;
|
---|
1059 |
|
---|
1060 | public ONE_CLASS_Q(svm_problem prob, svm_parameter param)
|
---|
1061 | : base(prob.l, prob.x, param) {
|
---|
1062 | cache = new Cache(prob.l, (long)(param.cache_size * (1 << 20)));
|
---|
1063 | QD = new double[prob.l];
|
---|
1064 | for (int i = 0; i < prob.l; i++)
|
---|
1065 | QD[i] = kernel_function(i, i);
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | public override float[] get_Q(int i, int len) {
|
---|
1069 | float[][] data = new float[1][];
|
---|
1070 | int start, j;
|
---|
1071 | if ((start = cache.get_data(i, data, len)) < len) {
|
---|
1072 | for (j = start; j < len; j++)
|
---|
1073 | data[0][j] = (float)kernel_function(i, j);
|
---|
1074 | }
|
---|
1075 | return data[0];
|
---|
1076 | }
|
---|
1077 |
|
---|
1078 | public override double[] get_QD() {
|
---|
1079 | return QD;
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | public override void swap_index(int i, int j) {
|
---|
1083 | cache.swap_index(i, j);
|
---|
1084 | base.swap_index(i, j); { double _ = QD[i]; QD[i] = QD[j]; QD[j] = _; }
|
---|
1085 | }
|
---|
1086 | }
|
---|
1087 |
|
---|
1088 | class SVR_Q : Kernel {
|
---|
1089 | private int l;
|
---|
1090 | private Cache cache;
|
---|
1091 | private short[] sign;
|
---|
1092 | private int[] index;
|
---|
1093 | private int next_buffer;
|
---|
1094 | private float[][] buffer;
|
---|
1095 | private readonly double[] QD;
|
---|
1096 |
|
---|
1097 | public SVR_Q(svm_problem prob, svm_parameter param)
|
---|
1098 | : base(prob.l, prob.x, param) {
|
---|
1099 | l = prob.l;
|
---|
1100 | cache = new Cache(l, (long)(param.cache_size * (1 << 20)));
|
---|
1101 | QD = new double[2 * l];
|
---|
1102 | sign = new short[2 * l];
|
---|
1103 | index = new int[2 * l];
|
---|
1104 | for (int k = 0; k < l; k++) {
|
---|
1105 | sign[k] = 1;
|
---|
1106 | sign[k + l] = -1;
|
---|
1107 | index[k] = k;
|
---|
1108 | index[k + l] = k;
|
---|
1109 | QD[k] = kernel_function(k, k);
|
---|
1110 | QD[k + l] = QD[k];
|
---|
1111 | }
|
---|
1112 | buffer = new float[2][];
|
---|
1113 | buffer[0] = new float[2 * l];
|
---|
1114 | buffer[1] = new float[2 * l];
|
---|
1115 | next_buffer = 0;
|
---|
1116 | }
|
---|
1117 |
|
---|
1118 | public override void swap_index(int i, int j) {
|
---|
1119 | { short _ = sign[i]; sign[i] = sign[j]; sign[j] = _; }
|
---|
1120 | { int _ = index[i]; index[i] = index[j]; index[j] = _; }
|
---|
1121 | { double _ = QD[i]; QD[i] = QD[j]; QD[j] = _; }
|
---|
1122 | }
|
---|
1123 |
|
---|
1124 | public override float[] get_Q(int i, int len) {
|
---|
1125 | float[][] data = new float[1][];
|
---|
1126 | int j, real_i = index[i];
|
---|
1127 | if (cache.get_data(real_i, data, l) < l) {
|
---|
1128 | for (j = 0; j < l; j++)
|
---|
1129 | data[0][j] = (float)kernel_function(real_i, j);
|
---|
1130 | }
|
---|
1131 |
|
---|
1132 | // reorder and copy
|
---|
1133 | float[] buf = buffer[next_buffer];
|
---|
1134 | next_buffer = 1 - next_buffer;
|
---|
1135 | short si = sign[i];
|
---|
1136 | for (j = 0; j < len; j++)
|
---|
1137 | buf[j] = (float)si * sign[j] * data[0][index[j]];
|
---|
1138 | return buf;
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 | public override double[] get_QD() {
|
---|
1142 | return QD;
|
---|
1143 | }
|
---|
1144 | }
|
---|
1145 |
|
---|
1146 | public class svm {
|
---|
1147 | //
|
---|
1148 | // construct and solve various formulations
|
---|
1149 | //
|
---|
1150 | public static readonly int LIBSVM_VERSION = 312;
|
---|
1151 | public static readonly Random rand = new Random();
|
---|
1152 |
|
---|
1153 | private static Action<string> svm_print_string = (s) => {
|
---|
1154 | Console.Out.Write(s);
|
---|
1155 | Console.Out.Flush();
|
---|
1156 | };
|
---|
1157 |
|
---|
1158 | public static void info(String s) {
|
---|
1159 | svm_print_string(s);
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | private static void solve_c_svc(svm_problem prob, svm_parameter param,
|
---|
1163 | double[] alpha, Solver.SolutionInfo si,
|
---|
1164 | double Cp, double Cn) {
|
---|
1165 | int l = prob.l;
|
---|
1166 | double[] minus_ones = new double[l];
|
---|
1167 | short[] y = new short[l];
|
---|
1168 |
|
---|
1169 | int i;
|
---|
1170 |
|
---|
1171 | for (i = 0; i < l; i++) {
|
---|
1172 | alpha[i] = 0;
|
---|
1173 | minus_ones[i] = -1;
|
---|
1174 | if (prob.y[i] > 0) y[i] = +1;
|
---|
1175 | else y[i] = -1;
|
---|
1176 | }
|
---|
1177 |
|
---|
1178 | Solver s = new Solver();
|
---|
1179 | s.Solve(l, new SVC_Q(prob, param, y), minus_ones, y,
|
---|
1180 | alpha, Cp, Cn, param.eps, si, param.shrinking);
|
---|
1181 |
|
---|
1182 | double sum_alpha = 0;
|
---|
1183 | for (i = 0; i < l; i++)
|
---|
1184 | sum_alpha += alpha[i];
|
---|
1185 |
|
---|
1186 | if (Cp == Cn)
|
---|
1187 | svm.info("nu = " + sum_alpha / (Cp * prob.l) + Environment.NewLine);
|
---|
1188 |
|
---|
1189 | for (i = 0; i < l; i++)
|
---|
1190 | alpha[i] *= y[i];
|
---|
1191 | }
|
---|
1192 |
|
---|
1193 | private static void solve_nu_svc(svm_problem prob, svm_parameter param,
|
---|
1194 | double[] alpha, Solver.SolutionInfo si) {
|
---|
1195 | int i;
|
---|
1196 | int l = prob.l;
|
---|
1197 | double nu = param.nu;
|
---|
1198 |
|
---|
1199 | short[] y = new short[l];
|
---|
1200 |
|
---|
1201 | for (i = 0; i < l; i++)
|
---|
1202 | if (prob.y[i] > 0)
|
---|
1203 | y[i] = +1;
|
---|
1204 | else
|
---|
1205 | y[i] = -1;
|
---|
1206 |
|
---|
1207 | double sum_pos = nu * l / 2;
|
---|
1208 | double sum_neg = nu * l / 2;
|
---|
1209 |
|
---|
1210 | for (i = 0; i < l; i++)
|
---|
1211 | if (y[i] == +1) {
|
---|
1212 | alpha[i] = Math.Min(1.0, sum_pos);
|
---|
1213 | sum_pos -= alpha[i];
|
---|
1214 | } else {
|
---|
1215 | alpha[i] = Math.Min(1.0, sum_neg);
|
---|
1216 | sum_neg -= alpha[i];
|
---|
1217 | }
|
---|
1218 |
|
---|
1219 | double[] zeros = new double[l];
|
---|
1220 |
|
---|
1221 | for (i = 0; i < l; i++)
|
---|
1222 | zeros[i] = 0;
|
---|
1223 |
|
---|
1224 | Solver_NU s = new Solver_NU();
|
---|
1225 | s.Solve(l, new SVC_Q(prob, param, y), zeros, y,
|
---|
1226 | alpha, 1.0, 1.0, param.eps, si, param.shrinking);
|
---|
1227 | double r = si.r;
|
---|
1228 |
|
---|
1229 | svm.info("C = " + 1 / r + Environment.NewLine);
|
---|
1230 |
|
---|
1231 | for (i = 0; i < l; i++)
|
---|
1232 | alpha[i] *= y[i] / r;
|
---|
1233 |
|
---|
1234 | si.rho /= r;
|
---|
1235 | si.obj /= (r * r);
|
---|
1236 | si.upper_bound_p = 1 / r;
|
---|
1237 | si.upper_bound_n = 1 / r;
|
---|
1238 | }
|
---|
1239 |
|
---|
1240 | private static void solve_one_class(svm_problem prob, svm_parameter param,
|
---|
1241 | double[] alpha, Solver.SolutionInfo si) {
|
---|
1242 | int l = prob.l;
|
---|
1243 | double[] zeros = new double[l];
|
---|
1244 | short[] ones = new short[l];
|
---|
1245 | int i;
|
---|
1246 |
|
---|
1247 | int n = (int)(param.nu * prob.l); // # of alpha's at upper bound
|
---|
1248 |
|
---|
1249 | for (i = 0; i < n; i++)
|
---|
1250 | alpha[i] = 1;
|
---|
1251 | if (n < prob.l)
|
---|
1252 | alpha[n] = param.nu * prob.l - n;
|
---|
1253 | for (i = n + 1; i < l; i++)
|
---|
1254 | alpha[i] = 0;
|
---|
1255 |
|
---|
1256 | for (i = 0; i < l; i++) {
|
---|
1257 | zeros[i] = 0;
|
---|
1258 | ones[i] = 1;
|
---|
1259 | }
|
---|
1260 |
|
---|
1261 | Solver s = new Solver();
|
---|
1262 | s.Solve(l, new ONE_CLASS_Q(prob, param), zeros, ones,
|
---|
1263 | alpha, 1.0, 1.0, param.eps, si, param.shrinking);
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 | private static void solve_epsilon_svr(svm_problem prob, svm_parameter param,
|
---|
1267 | double[] alpha, Solver.SolutionInfo si) {
|
---|
1268 | int l = prob.l;
|
---|
1269 | double[] alpha2 = new double[2 * l];
|
---|
1270 | double[] linear_term = new double[2 * l];
|
---|
1271 | short[] y = new short[2 * l];
|
---|
1272 | int i;
|
---|
1273 |
|
---|
1274 | for (i = 0; i < l; i++) {
|
---|
1275 | alpha2[i] = 0;
|
---|
1276 | linear_term[i] = param.p - prob.y[i];
|
---|
1277 | y[i] = 1;
|
---|
1278 |
|
---|
1279 | alpha2[i + l] = 0;
|
---|
1280 | linear_term[i + l] = param.p + prob.y[i];
|
---|
1281 | y[i + l] = -1;
|
---|
1282 | }
|
---|
1283 |
|
---|
1284 | Solver s = new Solver();
|
---|
1285 | s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y,
|
---|
1286 | alpha2, param.C, param.C, param.eps, si, param.shrinking);
|
---|
1287 |
|
---|
1288 | double sum_alpha = 0;
|
---|
1289 | for (i = 0; i < l; i++) {
|
---|
1290 | alpha[i] = alpha2[i] - alpha2[i + l];
|
---|
1291 | sum_alpha += Math.Abs(alpha[i]);
|
---|
1292 | }
|
---|
1293 | svm.info("nu = " + sum_alpha / (param.C * l) + Environment.NewLine);
|
---|
1294 | }
|
---|
1295 |
|
---|
1296 | private static void solve_nu_svr(svm_problem prob, svm_parameter param,
|
---|
1297 | double[] alpha, Solver.SolutionInfo si) {
|
---|
1298 | int l = prob.l;
|
---|
1299 | double C = param.C;
|
---|
1300 | double[] alpha2 = new double[2 * l];
|
---|
1301 | double[] linear_term = new double[2 * l];
|
---|
1302 | short[] y = new short[2 * l];
|
---|
1303 | int i;
|
---|
1304 |
|
---|
1305 | double sum = C * param.nu * l / 2;
|
---|
1306 | for (i = 0; i < l; i++) {
|
---|
1307 | alpha2[i] = alpha2[i + l] = Math.Min(sum, C);
|
---|
1308 | sum -= alpha2[i];
|
---|
1309 |
|
---|
1310 | linear_term[i] = -prob.y[i];
|
---|
1311 | y[i] = 1;
|
---|
1312 |
|
---|
1313 | linear_term[i + l] = prob.y[i];
|
---|
1314 | y[i + l] = -1;
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 | Solver_NU s = new Solver_NU();
|
---|
1318 | s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y,
|
---|
1319 | alpha2, C, C, param.eps, si, param.shrinking);
|
---|
1320 |
|
---|
1321 | svm.info("epsilon = " + (-si.r) + Environment.NewLine);
|
---|
1322 |
|
---|
1323 | for (i = 0; i < l; i++)
|
---|
1324 | alpha[i] = alpha2[i] - alpha2[i + l];
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | //
|
---|
1328 | // decision_function
|
---|
1329 | //
|
---|
1330 | private sealed class decision_function {
|
---|
1331 | public double[] alpha;
|
---|
1332 | public double rho;
|
---|
1333 | };
|
---|
1334 |
|
---|
1335 | private static decision_function svm_train_one(
|
---|
1336 | svm_problem prob, svm_parameter param,
|
---|
1337 | double Cp, double Cn) {
|
---|
1338 | double[] alpha = new double[prob.l];
|
---|
1339 | Solver.SolutionInfo si = new Solver.SolutionInfo();
|
---|
1340 | switch (param.svm_type) {
|
---|
1341 | case svm_parameter.C_SVC:
|
---|
1342 | solve_c_svc(prob, param, alpha, si, Cp, Cn);
|
---|
1343 | break;
|
---|
1344 | case svm_parameter.NU_SVC:
|
---|
1345 | solve_nu_svc(prob, param, alpha, si);
|
---|
1346 | break;
|
---|
1347 | case svm_parameter.ONE_CLASS:
|
---|
1348 | solve_one_class(prob, param, alpha, si);
|
---|
1349 | break;
|
---|
1350 | case svm_parameter.EPSILON_SVR:
|
---|
1351 | solve_epsilon_svr(prob, param, alpha, si);
|
---|
1352 | break;
|
---|
1353 | case svm_parameter.NU_SVR:
|
---|
1354 | solve_nu_svr(prob, param, alpha, si);
|
---|
1355 | break;
|
---|
1356 | }
|
---|
1357 |
|
---|
1358 | svm.info("obj = " + si.obj + ", rho = " + si.rho + Environment.NewLine);
|
---|
1359 |
|
---|
1360 | // output SVs
|
---|
1361 |
|
---|
1362 | int nSV = 0;
|
---|
1363 | int nBSV = 0;
|
---|
1364 | for (int i = 0; i < prob.l; i++) {
|
---|
1365 | if (Math.Abs(alpha[i]) > 0) {
|
---|
1366 | ++nSV;
|
---|
1367 | if (prob.y[i] > 0) {
|
---|
1368 | if (Math.Abs(alpha[i]) >= si.upper_bound_p)
|
---|
1369 | ++nBSV;
|
---|
1370 | } else {
|
---|
1371 | if (Math.Abs(alpha[i]) >= si.upper_bound_n)
|
---|
1372 | ++nBSV;
|
---|
1373 | }
|
---|
1374 | }
|
---|
1375 | }
|
---|
1376 |
|
---|
1377 | svm.info("nSV = " + nSV + ", nBSV = " + nBSV + Environment.NewLine);
|
---|
1378 |
|
---|
1379 | decision_function f = new decision_function();
|
---|
1380 | f.alpha = alpha;
|
---|
1381 | f.rho = si.rho;
|
---|
1382 | return f;
|
---|
1383 | }
|
---|
1384 |
|
---|
1385 | // Platt's binary SVM Probablistic Output: an improvement from Lin et al.
|
---|
1386 | private static void sigmoid_train(int l, double[] dec_values, double[] labels,
|
---|
1387 | double[] probAB) {
|
---|
1388 | double A, B;
|
---|
1389 | double prior1 = 0, prior0 = 0;
|
---|
1390 | int i;
|
---|
1391 |
|
---|
1392 | for (i = 0; i < l; i++)
|
---|
1393 | if (labels[i] > 0) prior1 += 1;
|
---|
1394 | else prior0 += 1;
|
---|
1395 |
|
---|
1396 | int max_iter = 100; // Maximal number of iterations
|
---|
1397 | double min_step = 1e-10; // Minimal step taken in line search
|
---|
1398 | double sigma = 1e-12; // For numerically strict PD of Hessian
|
---|
1399 | double eps = 1e-5;
|
---|
1400 | double hiTarget = (prior1 + 1.0) / (prior1 + 2.0);
|
---|
1401 | double loTarget = 1 / (prior0 + 2.0);
|
---|
1402 | double[] t = new double[l];
|
---|
1403 | double fApB, p, q, h11, h22, h21, g1, g2, det, dA, dB, gd, stepsize;
|
---|
1404 | double newA, newB, newf, d1, d2;
|
---|
1405 | int iter;
|
---|
1406 |
|
---|
1407 | // Initial Point and Initial Fun Value
|
---|
1408 | A = 0.0;
|
---|
1409 | B = Math.Log((prior0 + 1.0) / (prior1 + 1.0));
|
---|
1410 | double fval = 0.0;
|
---|
1411 |
|
---|
1412 | for (i = 0; i < l; i++) {
|
---|
1413 | if (labels[i] > 0) t[i] = hiTarget;
|
---|
1414 | else t[i] = loTarget;
|
---|
1415 | fApB = dec_values[i] * A + B;
|
---|
1416 | if (fApB >= 0)
|
---|
1417 | fval += t[i] * fApB + Math.Log(1 + Math.Exp(-fApB));
|
---|
1418 | else
|
---|
1419 | fval += (t[i] - 1) * fApB + Math.Log(1 + Math.Exp(fApB));
|
---|
1420 | }
|
---|
1421 | for (iter = 0; iter < max_iter; iter++) {
|
---|
1422 | // Update Gradient and Hessian (use H' = H + sigma I)
|
---|
1423 | h11 = sigma; // numerically ensures strict PD
|
---|
1424 | h22 = sigma;
|
---|
1425 | h21 = 0.0;
|
---|
1426 | g1 = 0.0;
|
---|
1427 | g2 = 0.0;
|
---|
1428 | for (i = 0; i < l; i++) {
|
---|
1429 | fApB = dec_values[i] * A + B;
|
---|
1430 | if (fApB >= 0) {
|
---|
1431 | p = Math.Exp(-fApB) / (1.0 + Math.Exp(-fApB));
|
---|
1432 | q = 1.0 / (1.0 + Math.Exp(-fApB));
|
---|
1433 | } else {
|
---|
1434 | p = 1.0 / (1.0 + Math.Exp(fApB));
|
---|
1435 | q = Math.Exp(fApB) / (1.0 + Math.Exp(fApB));
|
---|
1436 | }
|
---|
1437 | d2 = p * q;
|
---|
1438 | h11 += dec_values[i] * dec_values[i] * d2;
|
---|
1439 | h22 += d2;
|
---|
1440 | h21 += dec_values[i] * d2;
|
---|
1441 | d1 = t[i] - p;
|
---|
1442 | g1 += dec_values[i] * d1;
|
---|
1443 | g2 += d1;
|
---|
1444 | }
|
---|
1445 |
|
---|
1446 | // Stopping Criteria
|
---|
1447 | if (Math.Abs(g1) < eps && Math.Abs(g2) < eps)
|
---|
1448 | break;
|
---|
1449 |
|
---|
1450 | // Finding Newton direction: -inv(H') * g
|
---|
1451 | det = h11 * h22 - h21 * h21;
|
---|
1452 | dA = -(h22 * g1 - h21 * g2) / det;
|
---|
1453 | dB = -(-h21 * g1 + h11 * g2) / det;
|
---|
1454 | gd = g1 * dA + g2 * dB;
|
---|
1455 |
|
---|
1456 |
|
---|
1457 | stepsize = 1; // Line Search
|
---|
1458 | while (stepsize >= min_step) {
|
---|
1459 | newA = A + stepsize * dA;
|
---|
1460 | newB = B + stepsize * dB;
|
---|
1461 |
|
---|
1462 | // New function value
|
---|
1463 | newf = 0.0;
|
---|
1464 | for (i = 0; i < l; i++) {
|
---|
1465 | fApB = dec_values[i] * newA + newB;
|
---|
1466 | if (fApB >= 0)
|
---|
1467 | newf += t[i] * fApB + Math.Log(1 + Math.Exp(-fApB));
|
---|
1468 | else
|
---|
1469 | newf += (t[i] - 1) * fApB + Math.Log(1 + Math.Exp(fApB));
|
---|
1470 | }
|
---|
1471 | // Check sufficient decrease
|
---|
1472 | if (newf < fval + 0.0001 * stepsize * gd) {
|
---|
1473 | A = newA;
|
---|
1474 | B = newB;
|
---|
1475 | fval = newf;
|
---|
1476 | break;
|
---|
1477 | } else
|
---|
1478 | stepsize = stepsize / 2.0;
|
---|
1479 | }
|
---|
1480 |
|
---|
1481 | if (stepsize < min_step) {
|
---|
1482 | svm.info("Line search fails in two-class probability estimates" + Environment.NewLine);
|
---|
1483 | break;
|
---|
1484 | }
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | if (iter >= max_iter)
|
---|
1488 | svm.info("Reaching maximal iterations in two-class probability estimates" + Environment.NewLine);
|
---|
1489 | probAB[0] = A;
|
---|
1490 | probAB[1] = B;
|
---|
1491 | }
|
---|
1492 |
|
---|
1493 | private static double sigmoid_predict(double decision_value, double A, double B) {
|
---|
1494 | double fApB = decision_value * A + B;
|
---|
1495 | if (fApB >= 0)
|
---|
1496 | return Math.Exp(-fApB) / (1.0 + Math.Exp(-fApB));
|
---|
1497 | else
|
---|
1498 | return 1.0 / (1 + Math.Exp(fApB));
|
---|
1499 | }
|
---|
1500 |
|
---|
1501 | // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
|
---|
1502 | private static void multiclass_probability(int k, double[][] r, double[] p) {
|
---|
1503 | int t, j;
|
---|
1504 | int iter = 0, max_iter = Math.Max(100, k);
|
---|
1505 | double[][] Q = new double[k][];
|
---|
1506 | double[] Qp = new double[k];
|
---|
1507 | double pQp, eps = 0.005 / k;
|
---|
1508 |
|
---|
1509 | for (t = 0; t < k; t++) {
|
---|
1510 | Q[t] = new double[k];
|
---|
1511 | p[t] = 1.0 / k; // Valid if k = 1
|
---|
1512 | Q[t][t] = 0;
|
---|
1513 | for (j = 0; j < t; j++) {
|
---|
1514 | Q[t][t] += r[j][t] * r[j][t];
|
---|
1515 | Q[t][j] = Q[j][t];
|
---|
1516 | }
|
---|
1517 | for (j = t + 1; j < k; j++) {
|
---|
1518 | Q[t][t] += r[j][t] * r[j][t];
|
---|
1519 | Q[t][j] = -r[j][t] * r[t][j];
|
---|
1520 | }
|
---|
1521 | }
|
---|
1522 | for (iter = 0; iter < max_iter; iter++) {
|
---|
1523 | // stopping condition, recalculate QP,pQP for numerical accuracy
|
---|
1524 | pQp = 0;
|
---|
1525 | for (t = 0; t < k; t++) {
|
---|
1526 | Qp[t] = 0;
|
---|
1527 | for (j = 0; j < k; j++)
|
---|
1528 | Qp[t] += Q[t][j] * p[j];
|
---|
1529 | pQp += p[t] * Qp[t];
|
---|
1530 | }
|
---|
1531 | double max_error = 0;
|
---|
1532 | for (t = 0; t < k; t++) {
|
---|
1533 | double error = Math.Abs(Qp[t] - pQp);
|
---|
1534 | if (error > max_error)
|
---|
1535 | max_error = error;
|
---|
1536 | }
|
---|
1537 | if (max_error < eps) break;
|
---|
1538 |
|
---|
1539 | for (t = 0; t < k; t++) {
|
---|
1540 | double diff = (-Qp[t] + pQp) / Q[t][t];
|
---|
1541 | p[t] += diff;
|
---|
1542 | pQp = (pQp + diff * (diff * Q[t][t] + 2 * Qp[t])) / (1 + diff) / (1 + diff);
|
---|
1543 | for (j = 0; j < k; j++) {
|
---|
1544 | Qp[j] = (Qp[j] + diff * Q[t][j]) / (1 + diff);
|
---|
1545 | p[j] /= (1 + diff);
|
---|
1546 | }
|
---|
1547 | }
|
---|
1548 | }
|
---|
1549 | if (iter >= max_iter)
|
---|
1550 | svm.info("Exceeds max_iter in multiclass_prob" + Environment.NewLine);
|
---|
1551 | }
|
---|
1552 |
|
---|
1553 | // Cross-validation decision values for probability estimates
|
---|
1554 | private static void svm_binary_svc_probability(svm_problem prob, svm_parameter param, double Cp, double Cn,
|
---|
1555 | double[] probAB) {
|
---|
1556 | int i;
|
---|
1557 | int nr_fold = 5;
|
---|
1558 | int[] perm = new int[prob.l];
|
---|
1559 | double[] dec_values = new double[prob.l];
|
---|
1560 |
|
---|
1561 | // random shuffle
|
---|
1562 | for (i = 0; i < prob.l; i++) perm[i] = i;
|
---|
1563 | for (i = 0; i < prob.l; i++) {
|
---|
1564 | int j = i + rand.Next(prob.l - i);
|
---|
1565 | {
|
---|
1566 | int _ = perm[i];
|
---|
1567 | perm[i] = perm[j];
|
---|
1568 | perm[j] = _;
|
---|
1569 | }
|
---|
1570 | }
|
---|
1571 | for (i = 0; i < nr_fold; i++) {
|
---|
1572 | int begin = i * prob.l / nr_fold;
|
---|
1573 | int end = (i + 1) * prob.l / nr_fold;
|
---|
1574 | int j, k;
|
---|
1575 | svm_problem subprob = new svm_problem();
|
---|
1576 |
|
---|
1577 | subprob.l = prob.l - (end - begin);
|
---|
1578 | subprob.x = new svm_node[subprob.l][];
|
---|
1579 | subprob.y = new double[subprob.l];
|
---|
1580 |
|
---|
1581 | k = 0;
|
---|
1582 | for (j = 0; j < begin; j++) {
|
---|
1583 | subprob.x[k] = prob.x[perm[j]];
|
---|
1584 | subprob.y[k] = prob.y[perm[j]];
|
---|
1585 | ++k;
|
---|
1586 | }
|
---|
1587 | for (j = end; j < prob.l; j++) {
|
---|
1588 | subprob.x[k] = prob.x[perm[j]];
|
---|
1589 | subprob.y[k] = prob.y[perm[j]];
|
---|
1590 | ++k;
|
---|
1591 | }
|
---|
1592 | int p_count = 0, n_count = 0;
|
---|
1593 | for (j = 0; j < k; j++)
|
---|
1594 | if (subprob.y[j] > 0)
|
---|
1595 | p_count++;
|
---|
1596 | else
|
---|
1597 | n_count++;
|
---|
1598 |
|
---|
1599 | if (p_count == 0 && n_count == 0)
|
---|
1600 | for (j = begin; j < end; j++)
|
---|
1601 | dec_values[perm[j]] = 0;
|
---|
1602 | else if (p_count > 0 && n_count == 0)
|
---|
1603 | for (j = begin; j < end; j++)
|
---|
1604 | dec_values[perm[j]] = 1;
|
---|
1605 | else if (p_count == 0 && n_count > 0)
|
---|
1606 | for (j = begin; j < end; j++)
|
---|
1607 | dec_values[perm[j]] = -1;
|
---|
1608 | else {
|
---|
1609 | svm_parameter subparam = (svm_parameter)param.Clone();
|
---|
1610 | subparam.probability = 0;
|
---|
1611 | subparam.C = 1.0;
|
---|
1612 | subparam.nr_weight = 2;
|
---|
1613 | subparam.weight_label = new int[2];
|
---|
1614 | subparam.weight = new double[2];
|
---|
1615 | subparam.weight_label[0] = +1;
|
---|
1616 | subparam.weight_label[1] = -1;
|
---|
1617 | subparam.weight[0] = Cp;
|
---|
1618 | subparam.weight[1] = Cn;
|
---|
1619 | svm_model submodel = svm_train(subprob, subparam);
|
---|
1620 | for (j = begin; j < end; j++) {
|
---|
1621 | double[] dec_value = new double[1];
|
---|
1622 | svm_predict_values(submodel, prob.x[perm[j]], dec_value);
|
---|
1623 | dec_values[perm[j]] = dec_value[0];
|
---|
1624 | // ensure +1 -1 order; reason not using CV subroutine
|
---|
1625 | dec_values[perm[j]] *= submodel.label[0];
|
---|
1626 | }
|
---|
1627 | }
|
---|
1628 | }
|
---|
1629 | sigmoid_train(prob.l, dec_values, prob.y, probAB);
|
---|
1630 | }
|
---|
1631 |
|
---|
1632 | // Return parameter of a Laplace distribution
|
---|
1633 | private static double svm_svr_probability(svm_problem prob, svm_parameter param) {
|
---|
1634 | int i;
|
---|
1635 | int nr_fold = 5;
|
---|
1636 | double[] ymv = new double[prob.l];
|
---|
1637 | double mae = 0;
|
---|
1638 |
|
---|
1639 | svm_parameter newparam = (svm_parameter)param.Clone();
|
---|
1640 | newparam.probability = 0;
|
---|
1641 | svm_cross_validation(prob, newparam, nr_fold, ymv);
|
---|
1642 | for (i = 0; i < prob.l; i++) {
|
---|
1643 | ymv[i] = prob.y[i] - ymv[i];
|
---|
1644 | mae += Math.Abs(ymv[i]);
|
---|
1645 | }
|
---|
1646 | mae /= prob.l;
|
---|
1647 | double std = Math.Sqrt(2 * mae * mae);
|
---|
1648 | int count = 0;
|
---|
1649 | mae = 0;
|
---|
1650 | for (i = 0; i < prob.l; i++)
|
---|
1651 | if (Math.Abs(ymv[i]) > 5 * std)
|
---|
1652 | count = count + 1;
|
---|
1653 | else
|
---|
1654 | mae += Math.Abs(ymv[i]);
|
---|
1655 | mae /= (prob.l - count);
|
---|
1656 | svm.info("Prob. model for test data: target value = predicted value + z, " + Environment.NewLine
|
---|
1657 | + "z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + mae + Environment.NewLine);
|
---|
1658 | return mae;
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
|
---|
1662 | // perm, length l, must be allocated before calling this subroutine
|
---|
1663 | private static void svm_group_classes(svm_problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret,
|
---|
1664 | int[][] count_ret, int[] perm) {
|
---|
1665 | int l = prob.l;
|
---|
1666 | int max_nr_class = 16;
|
---|
1667 | int nr_class = 0;
|
---|
1668 | int[] label = new int[max_nr_class];
|
---|
1669 | int[] count = new int[max_nr_class];
|
---|
1670 | int[] data_label = new int[l];
|
---|
1671 | int i;
|
---|
1672 |
|
---|
1673 | for (i = 0; i < l; i++) {
|
---|
1674 | int this_label = (int)(prob.y[i]);
|
---|
1675 | int j;
|
---|
1676 | for (j = 0; j < nr_class; j++) {
|
---|
1677 | if (this_label == label[j]) {
|
---|
1678 | ++count[j];
|
---|
1679 | break;
|
---|
1680 | }
|
---|
1681 | }
|
---|
1682 | data_label[i] = j;
|
---|
1683 | if (j == nr_class) {
|
---|
1684 | if (nr_class == max_nr_class) {
|
---|
1685 | max_nr_class *= 2;
|
---|
1686 | int[] new_data = new int[max_nr_class];
|
---|
1687 | Array.Copy(label, 0, new_data, 0, label.Length);
|
---|
1688 | label = new_data;
|
---|
1689 | new_data = new int[max_nr_class];
|
---|
1690 | Array.Copy(count, 0, new_data, 0, count.Length);
|
---|
1691 | count = new_data;
|
---|
1692 | }
|
---|
1693 | label[nr_class] = this_label;
|
---|
1694 | count[nr_class] = 1;
|
---|
1695 | ++nr_class;
|
---|
1696 | }
|
---|
1697 | }
|
---|
1698 |
|
---|
1699 | int[] start = new int[nr_class];
|
---|
1700 | start[0] = 0;
|
---|
1701 | for (i = 1; i < nr_class; i++)
|
---|
1702 | start[i] = start[i - 1] + count[i - 1];
|
---|
1703 | for (i = 0; i < l; i++) {
|
---|
1704 | perm[start[data_label[i]]] = i;
|
---|
1705 | ++start[data_label[i]];
|
---|
1706 | }
|
---|
1707 | start[0] = 0;
|
---|
1708 | for (i = 1; i < nr_class; i++)
|
---|
1709 | start[i] = start[i - 1] + count[i - 1];
|
---|
1710 |
|
---|
1711 | nr_class_ret[0] = nr_class;
|
---|
1712 | label_ret[0] = label;
|
---|
1713 | start_ret[0] = start;
|
---|
1714 | count_ret[0] = count;
|
---|
1715 | }
|
---|
1716 |
|
---|
1717 | //
|
---|
1718 | // Interface functions
|
---|
1719 | //
|
---|
1720 | public static svm_model svm_train(svm_problem prob, svm_parameter param) {
|
---|
1721 | svm_model model = new svm_model();
|
---|
1722 | model.param = param;
|
---|
1723 |
|
---|
1724 | if (param.svm_type == svm_parameter.ONE_CLASS ||
|
---|
1725 | param.svm_type == svm_parameter.EPSILON_SVR ||
|
---|
1726 | param.svm_type == svm_parameter.NU_SVR) {
|
---|
1727 | // regression or one-class-svm
|
---|
1728 | model.nr_class = 2;
|
---|
1729 | model.label = null;
|
---|
1730 | model.nSV = null;
|
---|
1731 | model.probA = null;
|
---|
1732 | model.probB = null;
|
---|
1733 | model.sv_coef = new double[1][];
|
---|
1734 |
|
---|
1735 | if (param.probability == 1 &&
|
---|
1736 | (param.svm_type == svm_parameter.EPSILON_SVR ||
|
---|
1737 | param.svm_type == svm_parameter.NU_SVR)) {
|
---|
1738 | model.probA = new double[1];
|
---|
1739 | model.probA[0] = svm_svr_probability(prob, param);
|
---|
1740 | }
|
---|
1741 |
|
---|
1742 | decision_function f = svm_train_one(prob, param, 0, 0);
|
---|
1743 | model.rho = new double[1];
|
---|
1744 | model.rho[0] = f.rho;
|
---|
1745 |
|
---|
1746 | int nSV = 0;
|
---|
1747 | int i;
|
---|
1748 | for (i = 0; i < prob.l; i++)
|
---|
1749 | if (Math.Abs(f.alpha[i]) > 0) ++nSV;
|
---|
1750 | model.l = nSV;
|
---|
1751 | model.SV = new svm_node[nSV][];
|
---|
1752 | model.sv_coef[0] = new double[nSV];
|
---|
1753 | int j = 0;
|
---|
1754 | for (i = 0; i < prob.l; i++)
|
---|
1755 | if (Math.Abs(f.alpha[i]) > 0) {
|
---|
1756 | model.SV[j] = prob.x[i];
|
---|
1757 | model.sv_coef[0][j] = f.alpha[i];
|
---|
1758 | ++j;
|
---|
1759 | }
|
---|
1760 | } else {
|
---|
1761 | // classification
|
---|
1762 | int l = prob.l;
|
---|
1763 | int[] tmp_nr_class = new int[1];
|
---|
1764 | int[][] tmp_label = new int[1][];
|
---|
1765 | int[][] tmp_start = new int[1][];
|
---|
1766 | int[][] tmp_count = new int[1][];
|
---|
1767 | int[] perm = new int[l];
|
---|
1768 |
|
---|
1769 | // group training data of the same class
|
---|
1770 | svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
|
---|
1771 | int nr_class = tmp_nr_class[0];
|
---|
1772 | int[] label = tmp_label[0];
|
---|
1773 | int[] start = tmp_start[0];
|
---|
1774 | int[] count = tmp_count[0];
|
---|
1775 |
|
---|
1776 | if (nr_class == 1)
|
---|
1777 | svm.info("WARNING: training data in only one class. See README for details." + Environment.NewLine);
|
---|
1778 |
|
---|
1779 | svm_node[][] x = new svm_node[l][];
|
---|
1780 | int i;
|
---|
1781 | for (i = 0; i < l; i++)
|
---|
1782 | x[i] = prob.x[perm[i]];
|
---|
1783 |
|
---|
1784 | // calculate weighted C
|
---|
1785 |
|
---|
1786 | double[] weighted_C = new double[nr_class];
|
---|
1787 | for (i = 0; i < nr_class; i++)
|
---|
1788 | weighted_C[i] = param.C;
|
---|
1789 | for (i = 0; i < param.nr_weight; i++) {
|
---|
1790 | int j;
|
---|
1791 | for (j = 0; j < nr_class; j++)
|
---|
1792 | if (param.weight_label[i] == label[j])
|
---|
1793 | break;
|
---|
1794 | if (j == nr_class)
|
---|
1795 | Console.Error.WriteLine("WARNING: class label " + param.weight_label[i] +
|
---|
1796 | " specified in weight is not found");
|
---|
1797 | else
|
---|
1798 | weighted_C[j] *= param.weight[i];
|
---|
1799 | }
|
---|
1800 |
|
---|
1801 | // train k*(k-1)/2 models
|
---|
1802 |
|
---|
1803 | bool[] nonzero = new bool[l];
|
---|
1804 | for (i = 0; i < l; i++)
|
---|
1805 | nonzero[i] = false;
|
---|
1806 | decision_function[] f = new decision_function[nr_class * (nr_class - 1) / 2];
|
---|
1807 |
|
---|
1808 | double[] probA = null, probB = null;
|
---|
1809 | if (param.probability == 1) {
|
---|
1810 | probA = new double[nr_class * (nr_class - 1) / 2];
|
---|
1811 | probB = new double[nr_class * (nr_class - 1) / 2];
|
---|
1812 | }
|
---|
1813 |
|
---|
1814 | int p = 0;
|
---|
1815 | for (i = 0; i < nr_class; i++)
|
---|
1816 | for (int j = i + 1; j < nr_class; j++) {
|
---|
1817 | svm_problem sub_prob = new svm_problem();
|
---|
1818 | int si = start[i], sj = start[j];
|
---|
1819 | int ci = count[i], cj = count[j];
|
---|
1820 | sub_prob.l = ci + cj;
|
---|
1821 | sub_prob.x = new svm_node[sub_prob.l][];
|
---|
1822 | sub_prob.y = new double[sub_prob.l];
|
---|
1823 | int k;
|
---|
1824 | for (k = 0; k < ci; k++) {
|
---|
1825 | sub_prob.x[k] = x[si + k];
|
---|
1826 | sub_prob.y[k] = +1;
|
---|
1827 | }
|
---|
1828 | for (k = 0; k < cj; k++) {
|
---|
1829 | sub_prob.x[ci + k] = x[sj + k];
|
---|
1830 | sub_prob.y[ci + k] = -1;
|
---|
1831 | }
|
---|
1832 |
|
---|
1833 | if (param.probability == 1) {
|
---|
1834 | double[] probAB = new double[2];
|
---|
1835 | svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB);
|
---|
1836 | probA[p] = probAB[0];
|
---|
1837 | probB[p] = probAB[1];
|
---|
1838 | }
|
---|
1839 |
|
---|
1840 | f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]);
|
---|
1841 | for (k = 0; k < ci; k++)
|
---|
1842 | if (!nonzero[si + k] && Math.Abs(f[p].alpha[k]) > 0)
|
---|
1843 | nonzero[si + k] = true;
|
---|
1844 | for (k = 0; k < cj; k++)
|
---|
1845 | if (!nonzero[sj + k] && Math.Abs(f[p].alpha[ci + k]) > 0)
|
---|
1846 | nonzero[sj + k] = true;
|
---|
1847 | ++p;
|
---|
1848 | }
|
---|
1849 |
|
---|
1850 | // build output
|
---|
1851 |
|
---|
1852 | model.nr_class = nr_class;
|
---|
1853 |
|
---|
1854 | model.label = new int[nr_class];
|
---|
1855 | for (i = 0; i < nr_class; i++)
|
---|
1856 | model.label[i] = label[i];
|
---|
1857 |
|
---|
1858 | model.rho = new double[nr_class * (nr_class - 1) / 2];
|
---|
1859 | for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
1860 | model.rho[i] = f[i].rho;
|
---|
1861 |
|
---|
1862 | if (param.probability == 1) {
|
---|
1863 | model.probA = new double[nr_class * (nr_class - 1) / 2];
|
---|
1864 | model.probB = new double[nr_class * (nr_class - 1) / 2];
|
---|
1865 | for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) {
|
---|
1866 | model.probA[i] = probA[i];
|
---|
1867 | model.probB[i] = probB[i];
|
---|
1868 | }
|
---|
1869 | } else {
|
---|
1870 | model.probA = null;
|
---|
1871 | model.probB = null;
|
---|
1872 | }
|
---|
1873 |
|
---|
1874 | int nnz = 0;
|
---|
1875 | int[] nz_count = new int[nr_class];
|
---|
1876 | model.nSV = new int[nr_class];
|
---|
1877 | for (i = 0; i < nr_class; i++) {
|
---|
1878 | int nSV = 0;
|
---|
1879 | for (int j = 0; j < count[i]; j++)
|
---|
1880 | if (nonzero[start[i] + j]) {
|
---|
1881 | ++nSV;
|
---|
1882 | ++nnz;
|
---|
1883 | }
|
---|
1884 | model.nSV[i] = nSV;
|
---|
1885 | nz_count[i] = nSV;
|
---|
1886 | }
|
---|
1887 |
|
---|
1888 | svm.info("Total nSV = " + nnz + Environment.NewLine);
|
---|
1889 |
|
---|
1890 | model.l = nnz;
|
---|
1891 | model.SV = new svm_node[nnz][];
|
---|
1892 | p = 0;
|
---|
1893 | for (i = 0; i < l; i++)
|
---|
1894 | if (nonzero[i]) model.SV[p++] = x[i];
|
---|
1895 |
|
---|
1896 | int[] nz_start = new int[nr_class];
|
---|
1897 | nz_start[0] = 0;
|
---|
1898 | for (i = 1; i < nr_class; i++)
|
---|
1899 | nz_start[i] = nz_start[i - 1] + nz_count[i - 1];
|
---|
1900 |
|
---|
1901 | model.sv_coef = new double[nr_class - 1][];
|
---|
1902 | for (i = 0; i < nr_class - 1; i++)
|
---|
1903 | model.sv_coef[i] = new double[nnz];
|
---|
1904 |
|
---|
1905 | p = 0;
|
---|
1906 | for (i = 0; i < nr_class; i++)
|
---|
1907 | for (int j = i + 1; j < nr_class; j++) {
|
---|
1908 | // classifier (i,j): coefficients with
|
---|
1909 | // i are in sv_coef[j-1][nz_start[i]...],
|
---|
1910 | // j are in sv_coef[i][nz_start[j]...]
|
---|
1911 |
|
---|
1912 | int si = start[i];
|
---|
1913 | int sj = start[j];
|
---|
1914 | int ci = count[i];
|
---|
1915 | int cj = count[j];
|
---|
1916 |
|
---|
1917 | int q = nz_start[i];
|
---|
1918 | int k;
|
---|
1919 | for (k = 0; k < ci; k++)
|
---|
1920 | if (nonzero[si + k])
|
---|
1921 | model.sv_coef[j - 1][q++] = f[p].alpha[k];
|
---|
1922 | q = nz_start[j];
|
---|
1923 | for (k = 0; k < cj; k++)
|
---|
1924 | if (nonzero[sj + k])
|
---|
1925 | model.sv_coef[i][q++] = f[p].alpha[ci + k];
|
---|
1926 | ++p;
|
---|
1927 | }
|
---|
1928 | }
|
---|
1929 | return model;
|
---|
1930 | }
|
---|
1931 |
|
---|
1932 | // Stratified cross validation
|
---|
1933 | public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target) {
|
---|
1934 | int i;
|
---|
1935 | int[] fold_start = new int[nr_fold + 1];
|
---|
1936 | int l = prob.l;
|
---|
1937 | int[] perm = new int[l];
|
---|
1938 |
|
---|
1939 | // stratified cv may not give leave-one-out rate
|
---|
1940 | // Each class to l folds -> some folds may have zero elements
|
---|
1941 | if ((param.svm_type == svm_parameter.C_SVC ||
|
---|
1942 | param.svm_type == svm_parameter.NU_SVC) && nr_fold < l) {
|
---|
1943 | int[] tmp_nr_class = new int[1];
|
---|
1944 | int[][] tmp_label = new int[1][];
|
---|
1945 | int[][] tmp_start = new int[1][];
|
---|
1946 | int[][] tmp_count = new int[1][];
|
---|
1947 |
|
---|
1948 | svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
|
---|
1949 |
|
---|
1950 | int nr_class = tmp_nr_class[0];
|
---|
1951 | int[] start = tmp_start[0];
|
---|
1952 | int[] count = tmp_count[0];
|
---|
1953 |
|
---|
1954 | // random shuffle and then data grouped by fold using the array perm
|
---|
1955 | int[] fold_count = new int[nr_fold];
|
---|
1956 | int c;
|
---|
1957 | int[] index = new int[l];
|
---|
1958 | for (i = 0; i < l; i++)
|
---|
1959 | index[i] = perm[i];
|
---|
1960 | for (c = 0; c < nr_class; c++)
|
---|
1961 | for (i = 0; i < count[c]; i++) {
|
---|
1962 | int j = i + rand.Next(count[c] - i);
|
---|
1963 | {
|
---|
1964 | int _ = index[start[c] + j];
|
---|
1965 | index[start[c] + j] = index[start[c] + i];
|
---|
1966 | index[start[c] + i] = _;
|
---|
1967 | }
|
---|
1968 | }
|
---|
1969 | for (i = 0; i < nr_fold; i++) {
|
---|
1970 | fold_count[i] = 0;
|
---|
1971 | for (c = 0; c < nr_class; c++)
|
---|
1972 | fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold;
|
---|
1973 | }
|
---|
1974 | fold_start[0] = 0;
|
---|
1975 | for (i = 1; i <= nr_fold; i++)
|
---|
1976 | fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
|
---|
1977 | for (c = 0; c < nr_class; c++)
|
---|
1978 | for (i = 0; i < nr_fold; i++) {
|
---|
1979 | int begin = start[c] + i * count[c] / nr_fold;
|
---|
1980 | int end = start[c] + (i + 1) * count[c] / nr_fold;
|
---|
1981 | for (int j = begin; j < end; j++) {
|
---|
1982 | perm[fold_start[i]] = index[j];
|
---|
1983 | fold_start[i]++;
|
---|
1984 | }
|
---|
1985 | }
|
---|
1986 | fold_start[0] = 0;
|
---|
1987 | for (i = 1; i <= nr_fold; i++)
|
---|
1988 | fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
|
---|
1989 | } else {
|
---|
1990 | for (i = 0; i < l; i++) perm[i] = i;
|
---|
1991 | for (i = 0; i < l; i++) {
|
---|
1992 | int j = i + rand.Next(l - i);
|
---|
1993 | {
|
---|
1994 | int _ = perm[i];
|
---|
1995 | perm[i] = perm[j];
|
---|
1996 | perm[j] = _;
|
---|
1997 | }
|
---|
1998 | }
|
---|
1999 | for (i = 0; i <= nr_fold; i++)
|
---|
2000 | fold_start[i] = i * l / nr_fold;
|
---|
2001 | }
|
---|
2002 |
|
---|
2003 | for (i = 0; i < nr_fold; i++) {
|
---|
2004 | int begin = fold_start[i];
|
---|
2005 | int end = fold_start[i + 1];
|
---|
2006 | int j, k;
|
---|
2007 | svm_problem subprob = new svm_problem();
|
---|
2008 |
|
---|
2009 | subprob.l = l - (end - begin);
|
---|
2010 | subprob.x = new svm_node[subprob.l][];
|
---|
2011 | subprob.y = new double[subprob.l];
|
---|
2012 |
|
---|
2013 | k = 0;
|
---|
2014 | for (j = 0; j < begin; j++) {
|
---|
2015 | subprob.x[k] = prob.x[perm[j]];
|
---|
2016 | subprob.y[k] = prob.y[perm[j]];
|
---|
2017 | ++k;
|
---|
2018 | }
|
---|
2019 | for (j = end; j < l; j++) {
|
---|
2020 | subprob.x[k] = prob.x[perm[j]];
|
---|
2021 | subprob.y[k] = prob.y[perm[j]];
|
---|
2022 | ++k;
|
---|
2023 | }
|
---|
2024 | svm_model submodel = svm_train(subprob, param);
|
---|
2025 | if (param.probability == 1 &&
|
---|
2026 | (param.svm_type == svm_parameter.C_SVC ||
|
---|
2027 | param.svm_type == svm_parameter.NU_SVC)) {
|
---|
2028 | double[] prob_estimates = new double[svm_get_nr_class(submodel)];
|
---|
2029 | for (j = begin; j < end; j++)
|
---|
2030 | target[perm[j]] = svm_predict_probability(submodel, prob.x[perm[j]], prob_estimates);
|
---|
2031 | } else
|
---|
2032 | for (j = begin; j < end; j++)
|
---|
2033 | target[perm[j]] = svm_predict(submodel, prob.x[perm[j]]);
|
---|
2034 | }
|
---|
2035 | }
|
---|
2036 |
|
---|
2037 | public static int svm_get_svm_type(svm_model model) {
|
---|
2038 | return model.param.svm_type;
|
---|
2039 | }
|
---|
2040 |
|
---|
2041 | public static int svm_get_nr_class(svm_model model) {
|
---|
2042 | return model.nr_class;
|
---|
2043 | }
|
---|
2044 |
|
---|
2045 | public static void svm_get_labels(svm_model model, int[] label) {
|
---|
2046 | if (model.label != null)
|
---|
2047 | for (int i = 0; i < model.nr_class; i++)
|
---|
2048 | label[i] = model.label[i];
|
---|
2049 | }
|
---|
2050 |
|
---|
2051 | public static double svm_get_svr_probability(svm_model model) {
|
---|
2052 | if ((model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) &&
|
---|
2053 | model.probA != null)
|
---|
2054 | return model.probA[0];
|
---|
2055 | else {
|
---|
2056 | Console.Error.WriteLine("Model doesn't contain information for SVR probability inference");
|
---|
2057 | return 0;
|
---|
2058 | }
|
---|
2059 | }
|
---|
2060 |
|
---|
2061 | public static double svm_predict_values(svm_model model, svm_node[] x, double[] dec_values) {
|
---|
2062 | int i;
|
---|
2063 | if (model.param.svm_type == svm_parameter.ONE_CLASS ||
|
---|
2064 | model.param.svm_type == svm_parameter.EPSILON_SVR ||
|
---|
2065 | model.param.svm_type == svm_parameter.NU_SVR) {
|
---|
2066 | double[] sv_coef = model.sv_coef[0];
|
---|
2067 | double sum = 0;
|
---|
2068 | for (i = 0; i < model.l; i++)
|
---|
2069 | sum += sv_coef[i] * Kernel.k_function(x, model.SV[i], model.param);
|
---|
2070 | sum -= model.rho[0];
|
---|
2071 | dec_values[0] = sum;
|
---|
2072 |
|
---|
2073 | if (model.param.svm_type == svm_parameter.ONE_CLASS)
|
---|
2074 | return (sum > 0) ? 1 : -1;
|
---|
2075 | else
|
---|
2076 | return sum;
|
---|
2077 | } else {
|
---|
2078 | int nr_class = model.nr_class;
|
---|
2079 | int l = model.l;
|
---|
2080 |
|
---|
2081 | double[] kvalue = new double[l];
|
---|
2082 | for (i = 0; i < l; i++)
|
---|
2083 | kvalue[i] = Kernel.k_function(x, model.SV[i], model.param);
|
---|
2084 |
|
---|
2085 | int[] start = new int[nr_class];
|
---|
2086 | start[0] = 0;
|
---|
2087 | for (i = 1; i < nr_class; i++)
|
---|
2088 | start[i] = start[i - 1] + model.nSV[i - 1];
|
---|
2089 |
|
---|
2090 | int[] vote = new int[nr_class];
|
---|
2091 | for (i = 0; i < nr_class; i++)
|
---|
2092 | vote[i] = 0;
|
---|
2093 |
|
---|
2094 | int p = 0;
|
---|
2095 | for (i = 0; i < nr_class; i++)
|
---|
2096 | for (int j = i + 1; j < nr_class; j++) {
|
---|
2097 | double sum = 0;
|
---|
2098 | int si = start[i];
|
---|
2099 | int sj = start[j];
|
---|
2100 | int ci = model.nSV[i];
|
---|
2101 | int cj = model.nSV[j];
|
---|
2102 |
|
---|
2103 | int k;
|
---|
2104 | double[] coef1 = model.sv_coef[j - 1];
|
---|
2105 | double[] coef2 = model.sv_coef[i];
|
---|
2106 | for (k = 0; k < ci; k++)
|
---|
2107 | sum += coef1[si + k] * kvalue[si + k];
|
---|
2108 | for (k = 0; k < cj; k++)
|
---|
2109 | sum += coef2[sj + k] * kvalue[sj + k];
|
---|
2110 | sum -= model.rho[p];
|
---|
2111 | dec_values[p] = sum;
|
---|
2112 |
|
---|
2113 | if (dec_values[p] > 0)
|
---|
2114 | ++vote[i];
|
---|
2115 | else
|
---|
2116 | ++vote[j];
|
---|
2117 | p++;
|
---|
2118 | }
|
---|
2119 |
|
---|
2120 | int vote_max_idx = 0;
|
---|
2121 | for (i = 1; i < nr_class; i++)
|
---|
2122 | if (vote[i] > vote[vote_max_idx])
|
---|
2123 | vote_max_idx = i;
|
---|
2124 |
|
---|
2125 | return model.label[vote_max_idx];
|
---|
2126 | }
|
---|
2127 | }
|
---|
2128 |
|
---|
2129 | public static double svm_predict(svm_model model, svm_node[] x) {
|
---|
2130 | int nr_class = model.nr_class;
|
---|
2131 | double[] dec_values;
|
---|
2132 | if (model.param.svm_type == svm_parameter.ONE_CLASS ||
|
---|
2133 | model.param.svm_type == svm_parameter.EPSILON_SVR ||
|
---|
2134 | model.param.svm_type == svm_parameter.NU_SVR)
|
---|
2135 | dec_values = new double[1];
|
---|
2136 | else
|
---|
2137 | dec_values = new double[nr_class * (nr_class - 1) / 2];
|
---|
2138 | double pred_result = svm_predict_values(model, x, dec_values);
|
---|
2139 | return pred_result;
|
---|
2140 | }
|
---|
2141 |
|
---|
2142 | public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates) {
|
---|
2143 | if ((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) &&
|
---|
2144 | model.probA != null && model.probB != null) {
|
---|
2145 | int i;
|
---|
2146 | int nr_class = model.nr_class;
|
---|
2147 | double[] dec_values = new double[nr_class * (nr_class - 1) / 2];
|
---|
2148 | svm_predict_values(model, x, dec_values);
|
---|
2149 |
|
---|
2150 | double min_prob = 1e-7;
|
---|
2151 | double[][] pairwise_prob = new double[nr_class][];
|
---|
2152 |
|
---|
2153 | int k = 0;
|
---|
2154 | for (i = 0; i < nr_class; i++)
|
---|
2155 | pairwise_prob[i] = new double[nr_class];
|
---|
2156 | for (int j = i + 1; j < nr_class; j++) {
|
---|
2157 | pairwise_prob[i][j] =
|
---|
2158 | Math.Min(Math.Max(sigmoid_predict(dec_values[k], model.probA[k], model.probB[k]), min_prob), 1 - min_prob);
|
---|
2159 | pairwise_prob[j][i] = 1 - pairwise_prob[i][j];
|
---|
2160 | k++;
|
---|
2161 | }
|
---|
2162 | multiclass_probability(nr_class, pairwise_prob, prob_estimates);
|
---|
2163 |
|
---|
2164 | int prob_max_idx = 0;
|
---|
2165 | for (i = 1; i < nr_class; i++)
|
---|
2166 | if (prob_estimates[i] > prob_estimates[prob_max_idx])
|
---|
2167 | prob_max_idx = i;
|
---|
2168 | return model.label[prob_max_idx];
|
---|
2169 | } else
|
---|
2170 | return svm_predict(model, x);
|
---|
2171 | }
|
---|
2172 |
|
---|
2173 | private static readonly string[] svm_type_table = new string[]
|
---|
2174 | {
|
---|
2175 | "c_svc", "nu_svc", "one_class", "epsilon_svr", "nu_svr",
|
---|
2176 | };
|
---|
2177 |
|
---|
2178 | private static readonly string[] kernel_type_table = new string[]
|
---|
2179 | {
|
---|
2180 | "linear", "polynomial", "rbf", "sigmoid", "precomputed"
|
---|
2181 | };
|
---|
2182 |
|
---|
2183 |
|
---|
2184 | public static void svm_save_model(string model_file_name, svm_model model) {
|
---|
2185 | //DataOutputStream fp = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(model_file_name)));
|
---|
2186 | var writer = new StreamWriter(model_file_name);
|
---|
2187 | svm_save_model(writer, model);
|
---|
2188 | }
|
---|
2189 |
|
---|
2190 |
|
---|
2191 | public static void svm_save_model(StreamWriter writer, svm_model model) {
|
---|
2192 |
|
---|
2193 | var savedCulture = Thread.CurrentThread.CurrentCulture;
|
---|
2194 | Thread.CurrentThread.CurrentCulture = CultureInfo.InvariantCulture;
|
---|
2195 | svm_parameter param = model.param;
|
---|
2196 |
|
---|
2197 | writer.Write("svm_type " + svm_type_table[param.svm_type] + Environment.NewLine);
|
---|
2198 | writer.Write("kernel_type " + kernel_type_table[param.kernel_type] + Environment.NewLine);
|
---|
2199 |
|
---|
2200 | if (param.kernel_type == svm_parameter.POLY)
|
---|
2201 | writer.Write("degree " + param.degree + Environment.NewLine);
|
---|
2202 |
|
---|
2203 | if (param.kernel_type == svm_parameter.POLY ||
|
---|
2204 | param.kernel_type == svm_parameter.RBF ||
|
---|
2205 | param.kernel_type == svm_parameter.SIGMOID)
|
---|
2206 | writer.Write("gamma " + param.gamma.ToString("r") + Environment.NewLine);
|
---|
2207 |
|
---|
2208 | if (param.kernel_type == svm_parameter.POLY ||
|
---|
2209 | param.kernel_type == svm_parameter.SIGMOID)
|
---|
2210 | writer.Write("coef0 " + param.coef0.ToString("r") + Environment.NewLine);
|
---|
2211 |
|
---|
2212 | int nr_class = model.nr_class;
|
---|
2213 | int l = model.l;
|
---|
2214 | writer.Write("nr_class " + nr_class + Environment.NewLine);
|
---|
2215 | writer.Write("total_sv " + l + Environment.NewLine);
|
---|
2216 |
|
---|
2217 | {
|
---|
2218 | writer.Write("rho");
|
---|
2219 | for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
2220 | writer.Write(" " + model.rho[i].ToString("r"));
|
---|
2221 | writer.Write(Environment.NewLine);
|
---|
2222 | }
|
---|
2223 |
|
---|
2224 | if (model.label != null) {
|
---|
2225 | writer.Write("label");
|
---|
2226 | for (int i = 0; i < nr_class; i++)
|
---|
2227 | writer.Write(" " + model.label[i]);
|
---|
2228 | writer.Write(Environment.NewLine);
|
---|
2229 | }
|
---|
2230 |
|
---|
2231 | if (model.probA != null) // regression has probA only
|
---|
2232 | {
|
---|
2233 | writer.Write("probA");
|
---|
2234 | for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
2235 | writer.Write(" " + model.probA[i].ToString("r"));
|
---|
2236 | writer.Write(Environment.NewLine);
|
---|
2237 | }
|
---|
2238 | if (model.probB != null) {
|
---|
2239 | writer.Write("probB");
|
---|
2240 | for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
2241 | writer.Write(" " + model.probB[i].ToString("r"));
|
---|
2242 | writer.Write(Environment.NewLine);
|
---|
2243 | }
|
---|
2244 |
|
---|
2245 | if (model.nSV != null) {
|
---|
2246 | writer.Write("nr_sv");
|
---|
2247 | for (int i = 0; i < nr_class; i++)
|
---|
2248 | writer.Write(" " + model.nSV[i]);
|
---|
2249 | writer.Write(Environment.NewLine);
|
---|
2250 | }
|
---|
2251 |
|
---|
2252 | writer.WriteLine("SV");
|
---|
2253 | double[][] sv_coef = model.sv_coef;
|
---|
2254 | svm_node[][] SV = model.SV;
|
---|
2255 |
|
---|
2256 | for (int i = 0; i < l; i++) {
|
---|
2257 | for (int j = 0; j < nr_class - 1; j++)
|
---|
2258 | writer.Write(sv_coef[j][i].ToString("r") + " ");
|
---|
2259 |
|
---|
2260 | svm_node[] p = SV[i];
|
---|
2261 | if (param.kernel_type == svm_parameter.PRECOMPUTED)
|
---|
2262 | writer.Write("0:" + (int)(p[0].value));
|
---|
2263 | else
|
---|
2264 | for (int j = 0; j < p.Length; j++)
|
---|
2265 | writer.Write(p[j].index + ":" + p[j].value.ToString("r") + " ");
|
---|
2266 | writer.Write(Environment.NewLine);
|
---|
2267 | }
|
---|
2268 |
|
---|
2269 | writer.Flush();
|
---|
2270 | Thread.CurrentThread.CurrentCulture = savedCulture;
|
---|
2271 | }
|
---|
2272 |
|
---|
2273 | private static double atof(String s) {
|
---|
2274 | return double.Parse(s);
|
---|
2275 | }
|
---|
2276 |
|
---|
2277 | private static int atoi(String s) {
|
---|
2278 | return int.Parse(s);
|
---|
2279 | }
|
---|
2280 |
|
---|
2281 |
|
---|
2282 | public static svm_model svm_load_model(String model_file_name) {
|
---|
2283 | return svm_load_model(new StreamReader(model_file_name));
|
---|
2284 | }
|
---|
2285 |
|
---|
2286 | public static svm_model svm_load_model(StreamReader reader) {
|
---|
2287 | var savedCulture = Thread.CurrentThread.CurrentCulture;
|
---|
2288 | Thread.CurrentThread.CurrentCulture = CultureInfo.InvariantCulture;
|
---|
2289 |
|
---|
2290 | // read parameters
|
---|
2291 |
|
---|
2292 | svm_model model = new svm_model();
|
---|
2293 | svm_parameter param = new svm_parameter();
|
---|
2294 | model.param = param;
|
---|
2295 | model.rho = null;
|
---|
2296 | model.probA = null;
|
---|
2297 | model.probB = null;
|
---|
2298 | model.label = null;
|
---|
2299 | model.nSV = null;
|
---|
2300 |
|
---|
2301 | while (true) {
|
---|
2302 | String cmd = reader.ReadLine();
|
---|
2303 | String arg = cmd.Substring(cmd.IndexOf(' ') + 1);
|
---|
2304 |
|
---|
2305 | if (cmd.StartsWith("svm_type")) {
|
---|
2306 | int i;
|
---|
2307 | for (i = 0; i < svm_type_table.Length; i++) {
|
---|
2308 | if (arg.IndexOf(svm_type_table[i], StringComparison.InvariantCultureIgnoreCase) != -1) {
|
---|
2309 | param.svm_type = i;
|
---|
2310 | break;
|
---|
2311 | }
|
---|
2312 | }
|
---|
2313 | if (i == svm_type_table.Length) {
|
---|
2314 | Console.Error.WriteLine("unknown svm type.");
|
---|
2315 | return null;
|
---|
2316 | }
|
---|
2317 | } else if (cmd.StartsWith("kernel_type")) {
|
---|
2318 | int i;
|
---|
2319 | for (i = 0; i < kernel_type_table.Length; i++) {
|
---|
2320 | if (arg.IndexOf(kernel_type_table[i], StringComparison.InvariantCultureIgnoreCase) != -1) {
|
---|
2321 | param.kernel_type = i;
|
---|
2322 | break;
|
---|
2323 | }
|
---|
2324 | }
|
---|
2325 | if (i == kernel_type_table.Length) {
|
---|
2326 | Console.Error.WriteLine("unknown kernel function.");
|
---|
2327 | return null;
|
---|
2328 | }
|
---|
2329 | } else if (cmd.StartsWith("degree"))
|
---|
2330 | param.degree = atoi(arg);
|
---|
2331 | else if (cmd.StartsWith("gamma"))
|
---|
2332 | param.gamma = atof(arg);
|
---|
2333 | else if (cmd.StartsWith("coef0"))
|
---|
2334 | param.coef0 = atof(arg);
|
---|
2335 | else if (cmd.StartsWith("nr_class"))
|
---|
2336 | model.nr_class = atoi(arg);
|
---|
2337 | else if (cmd.StartsWith("total_sv"))
|
---|
2338 | model.l = atoi(arg);
|
---|
2339 | else if (cmd.StartsWith("rho")) {
|
---|
2340 | int n = model.nr_class * (model.nr_class - 1) / 2;
|
---|
2341 | model.rho = new double[n];
|
---|
2342 | var st = arg.Split(' ', '\t', '\n', '\r', '\f');
|
---|
2343 | for (int i = 0; i < n; i++)
|
---|
2344 | model.rho[i] = atof(st[i]);
|
---|
2345 | } else if (cmd.StartsWith("label")) {
|
---|
2346 | int n = model.nr_class;
|
---|
2347 | model.label = new int[n];
|
---|
2348 | var st = arg.Split(' ', '\t', '\n', '\r', '\f');
|
---|
2349 | for (int i = 0; i < n; i++)
|
---|
2350 | model.label[i] = atoi(st[i]);
|
---|
2351 | } else if (cmd.StartsWith("probA")) {
|
---|
2352 | int n = model.nr_class * (model.nr_class - 1) / 2;
|
---|
2353 | model.probA = new double[n];
|
---|
2354 | var st = arg.Split(' ', '\t', '\n', '\r', '\f');
|
---|
2355 | for (int i = 0; i < n; i++)
|
---|
2356 | model.probA[i] = atof(st[i]);
|
---|
2357 | } else if (cmd.StartsWith("probB")) {
|
---|
2358 | int n = model.nr_class * (model.nr_class - 1) / 2;
|
---|
2359 | model.probB = new double[n];
|
---|
2360 | var st = arg.Split(' ', '\t', '\n', '\r', '\f');
|
---|
2361 | for (int i = 0; i < n; i++)
|
---|
2362 | model.probB[i] = atof(st[i]);
|
---|
2363 | } else if (cmd.StartsWith("nr_sv")) {
|
---|
2364 | int n = model.nr_class;
|
---|
2365 | model.nSV = new int[n];
|
---|
2366 | var st = arg.Split(' ', '\t', '\n', '\r', '\f');
|
---|
2367 | for (int i = 0; i < n; i++)
|
---|
2368 | model.nSV[i] = atoi(st[i]);
|
---|
2369 | } else if (cmd.StartsWith("SV")) {
|
---|
2370 | break;
|
---|
2371 | } else {
|
---|
2372 | Console.Error.WriteLine("unknown text in model file: [" + cmd + "]");
|
---|
2373 | return null;
|
---|
2374 | }
|
---|
2375 | }
|
---|
2376 |
|
---|
2377 | // read sv_coef and SV
|
---|
2378 |
|
---|
2379 | int m = model.nr_class - 1;
|
---|
2380 | int l = model.l;
|
---|
2381 | model.sv_coef = new double[m][];
|
---|
2382 | for (int k = 0; k < m; k++)
|
---|
2383 | model.sv_coef[k] = new double[l];
|
---|
2384 |
|
---|
2385 | model.SV = new svm_node[l][];
|
---|
2386 |
|
---|
2387 |
|
---|
2388 | for (int i = 0; i < l; i++) {
|
---|
2389 | String line = reader.ReadLine();
|
---|
2390 | var st = line.Split(' ', '\t', '\n', '\r', '\f', ':');
|
---|
2391 |
|
---|
2392 | for (int k = 0; k < m; k++) {
|
---|
2393 | model.sv_coef[k][i] = atof(st[k]);
|
---|
2394 | }
|
---|
2395 | // skip y value
|
---|
2396 | st = st.Skip(1).ToArray();
|
---|
2397 |
|
---|
2398 | int n = st.Length / 2;
|
---|
2399 | model.SV[i] = new svm_node[n];
|
---|
2400 | for (int j = 0; j < n; j++) {
|
---|
2401 | model.SV[i][j] = new svm_node();
|
---|
2402 | model.SV[i][j].index = atoi(st[2 * j]);
|
---|
2403 | model.SV[i][j].value = atof(st[2 * j + 1]);
|
---|
2404 | }
|
---|
2405 | }
|
---|
2406 |
|
---|
2407 | Thread.CurrentThread.CurrentCulture = savedCulture;
|
---|
2408 | return model;
|
---|
2409 | }
|
---|
2410 |
|
---|
2411 | public static string svm_check_parameter(svm_problem prob, svm_parameter param) {
|
---|
2412 | // svm_type
|
---|
2413 |
|
---|
2414 | int svm_type = param.svm_type;
|
---|
2415 | if (svm_type != svm_parameter.C_SVC &&
|
---|
2416 | svm_type != svm_parameter.NU_SVC &&
|
---|
2417 | svm_type != svm_parameter.ONE_CLASS &&
|
---|
2418 | svm_type != svm_parameter.EPSILON_SVR &&
|
---|
2419 | svm_type != svm_parameter.NU_SVR)
|
---|
2420 | return "unknown svm type";
|
---|
2421 |
|
---|
2422 | // kernel_type, degree
|
---|
2423 |
|
---|
2424 | int kernel_type = param.kernel_type;
|
---|
2425 | if (kernel_type != svm_parameter.LINEAR &&
|
---|
2426 | kernel_type != svm_parameter.POLY &&
|
---|
2427 | kernel_type != svm_parameter.RBF &&
|
---|
2428 | kernel_type != svm_parameter.SIGMOID &&
|
---|
2429 | kernel_type != svm_parameter.PRECOMPUTED)
|
---|
2430 | return "unknown kernel type";
|
---|
2431 |
|
---|
2432 | if (param.gamma < 0)
|
---|
2433 | return "gamma < 0";
|
---|
2434 |
|
---|
2435 | if (param.degree < 0)
|
---|
2436 | return "degree of polynomial kernel < 0";
|
---|
2437 |
|
---|
2438 | // cache_size,eps,C,nu,p,shrinking
|
---|
2439 |
|
---|
2440 | if (param.cache_size <= 0)
|
---|
2441 | return "cache_size <= 0";
|
---|
2442 |
|
---|
2443 | if (param.eps <= 0)
|
---|
2444 | return "eps <= 0";
|
---|
2445 |
|
---|
2446 | if (svm_type == svm_parameter.C_SVC ||
|
---|
2447 | svm_type == svm_parameter.EPSILON_SVR ||
|
---|
2448 | svm_type == svm_parameter.NU_SVR)
|
---|
2449 | if (param.C <= 0)
|
---|
2450 | return "C <= 0";
|
---|
2451 |
|
---|
2452 | if (svm_type == svm_parameter.NU_SVC ||
|
---|
2453 | svm_type == svm_parameter.ONE_CLASS ||
|
---|
2454 | svm_type == svm_parameter.NU_SVR)
|
---|
2455 | if (param.nu <= 0 || param.nu > 1)
|
---|
2456 | return "nu <= 0 or nu > 1";
|
---|
2457 |
|
---|
2458 | if (svm_type == svm_parameter.EPSILON_SVR)
|
---|
2459 | if (param.p < 0)
|
---|
2460 | return "p < 0";
|
---|
2461 |
|
---|
2462 | if (param.shrinking != 0 &&
|
---|
2463 | param.shrinking != 1)
|
---|
2464 | return "shrinking != 0 and shrinking != 1";
|
---|
2465 |
|
---|
2466 | if (param.probability != 0 &&
|
---|
2467 | param.probability != 1)
|
---|
2468 | return "probability != 0 and probability != 1";
|
---|
2469 |
|
---|
2470 | if (param.probability == 1 &&
|
---|
2471 | svm_type == svm_parameter.ONE_CLASS)
|
---|
2472 | return "one-class SVM probability output not supported yet";
|
---|
2473 |
|
---|
2474 | // check whether nu-svc is feasible
|
---|
2475 |
|
---|
2476 | if (svm_type == svm_parameter.NU_SVC) {
|
---|
2477 | int l = prob.l;
|
---|
2478 | int max_nr_class = 16;
|
---|
2479 | int nr_class = 0;
|
---|
2480 | int[] label = new int[max_nr_class];
|
---|
2481 | int[] count = new int[max_nr_class];
|
---|
2482 |
|
---|
2483 | int i;
|
---|
2484 | for (i = 0; i < l; i++) {
|
---|
2485 | int this_label = (int)prob.y[i];
|
---|
2486 | int j;
|
---|
2487 | for (j = 0; j < nr_class; j++)
|
---|
2488 | if (this_label == label[j]) {
|
---|
2489 | ++count[j];
|
---|
2490 | break;
|
---|
2491 | }
|
---|
2492 |
|
---|
2493 | if (j == nr_class) {
|
---|
2494 | if (nr_class == max_nr_class) {
|
---|
2495 | max_nr_class *= 2;
|
---|
2496 | int[] new_data = new int[max_nr_class];
|
---|
2497 | Array.Copy(label, 0, new_data, 0, label.Length);
|
---|
2498 | label = new_data;
|
---|
2499 |
|
---|
2500 | new_data = new int[max_nr_class];
|
---|
2501 | Array.Copy(count, 0, new_data, 0, count.Length);
|
---|
2502 | count = new_data;
|
---|
2503 | }
|
---|
2504 | label[nr_class] = this_label;
|
---|
2505 | count[nr_class] = 1;
|
---|
2506 | ++nr_class;
|
---|
2507 | }
|
---|
2508 | }
|
---|
2509 |
|
---|
2510 | for (i = 0; i < nr_class; i++) {
|
---|
2511 | int n1 = count[i];
|
---|
2512 | for (int j = i + 1; j < nr_class; j++) {
|
---|
2513 | int n2 = count[j];
|
---|
2514 | if (param.nu * (n1 + n2) / 2 > Math.Min(n1, n2))
|
---|
2515 | return "specified nu is infeasible";
|
---|
2516 | }
|
---|
2517 | }
|
---|
2518 | }
|
---|
2519 |
|
---|
2520 | return null;
|
---|
2521 | }
|
---|
2522 |
|
---|
2523 | public static int svm_check_probability_model(svm_model model) {
|
---|
2524 | if (((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) &&
|
---|
2525 | model.probA != null && model.probB != null) ||
|
---|
2526 | ((model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) &&
|
---|
2527 | model.probA != null))
|
---|
2528 | return 1;
|
---|
2529 | else
|
---|
2530 | return 0;
|
---|
2531 | }
|
---|
2532 |
|
---|
2533 | public static void svm_set_print_string_function(Action<string> print_func) {
|
---|
2534 | /*if (print_func == null)
|
---|
2535 | svm_print_string = svm_print_stdout;
|
---|
2536 | else
|
---|
2537 | svm_print_string = print_func;
|
---|
2538 | */
|
---|
2539 | if (print_func != null) svm_print_string = print_func;
|
---|
2540 | }
|
---|
2541 | }
|
---|
2542 |
|
---|
2543 | public class svm_node : ICloneable {
|
---|
2544 | public int index;
|
---|
2545 | public double value;
|
---|
2546 | public object Clone() {
|
---|
2547 | var clone = new svm_node();
|
---|
2548 | clone.index = index;
|
---|
2549 | clone.value = value;
|
---|
2550 | return clone;
|
---|
2551 | }
|
---|
2552 | }
|
---|
2553 |
|
---|
2554 | public class svm_model {
|
---|
2555 | public svm_parameter param; // parameter
|
---|
2556 | public int nr_class; // number of classes, = 2 in regression/one class svm
|
---|
2557 | public int l; // total #SV
|
---|
2558 | public svm_node[][] SV; // SVs (SV[l])
|
---|
2559 | public double[][] sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l])
|
---|
2560 | public double[] rho; // constants in decision functions (rho[k*(k-1)/2])
|
---|
2561 | public double[] probA; // pariwise probability information
|
---|
2562 | public double[] probB;
|
---|
2563 |
|
---|
2564 | // for classification only
|
---|
2565 |
|
---|
2566 | public int[] label; // label of each class (label[k])
|
---|
2567 | public int[] nSV; // number of SVs for each class (nSV[k])
|
---|
2568 | // nSV[0] + nSV[1] + ... + nSV[k-1] = l
|
---|
2569 | };
|
---|
2570 |
|
---|
2571 | public class svm_problem {
|
---|
2572 | public int l;
|
---|
2573 | public double[] y;
|
---|
2574 | public svm_node[][] x;
|
---|
2575 | }
|
---|
2576 |
|
---|
2577 | public interface svm_print_interface {
|
---|
2578 | void print(String s);
|
---|
2579 | }
|
---|
2580 |
|
---|
2581 | public class svm_parameter : ICloneable {
|
---|
2582 | /* svm_type */
|
---|
2583 | public const int C_SVC = 0;
|
---|
2584 | public const int NU_SVC = 1;
|
---|
2585 | public const int ONE_CLASS = 2;
|
---|
2586 | public const int EPSILON_SVR = 3;
|
---|
2587 | public const int NU_SVR = 4;
|
---|
2588 |
|
---|
2589 | /* kernel_type */
|
---|
2590 | public const int LINEAR = 0;
|
---|
2591 | public const int POLY = 1;
|
---|
2592 | public const int RBF = 2;
|
---|
2593 | public const int SIGMOID = 3;
|
---|
2594 | public const int PRECOMPUTED = 4;
|
---|
2595 |
|
---|
2596 | public int svm_type;
|
---|
2597 | public int kernel_type;
|
---|
2598 | public int degree; // for poly
|
---|
2599 | public double gamma; // for poly/rbf/sigmoid
|
---|
2600 | public double coef0; // for poly/sigmoid
|
---|
2601 |
|
---|
2602 | // these are for training only
|
---|
2603 | public double cache_size; // in MB
|
---|
2604 | public double eps; // stopping criteria
|
---|
2605 | public double C; // for C_SVC, EPSILON_SVR and NU_SVR
|
---|
2606 | public int nr_weight; // for C_SVC
|
---|
2607 | public int[] weight_label; // for C_SVC
|
---|
2608 | public double[] weight; // for C_SVC
|
---|
2609 | public double nu; // for NU_SVC, ONE_CLASS, and NU_SVR
|
---|
2610 | public double p; // for EPSILON_SVR
|
---|
2611 | public int shrinking; // use the shrinking heuristics
|
---|
2612 | public int probability; // do probability estimates
|
---|
2613 |
|
---|
2614 | public virtual object Clone() {
|
---|
2615 | var clone = new svm_parameter();
|
---|
2616 | clone.svm_type = svm_type;
|
---|
2617 | clone.kernel_type = kernel_type;
|
---|
2618 | clone.degree = degree;
|
---|
2619 | clone.gamma = gamma;
|
---|
2620 | clone.coef0 = coef0;
|
---|
2621 | clone.cache_size = cache_size;
|
---|
2622 | clone.eps = eps;
|
---|
2623 | clone.C = C;
|
---|
2624 | clone.nr_weight = nr_weight;
|
---|
2625 | if (weight_label != null) {
|
---|
2626 | clone.weight_label = new int[weight_label.Length];
|
---|
2627 | Array.Copy(weight_label, clone.weight_label, weight_label.Length);
|
---|
2628 | }
|
---|
2629 | if (weight != null) {
|
---|
2630 | clone.weight = new double[weight.Length];
|
---|
2631 | Array.Copy(weight, clone.weight, weight.Length);
|
---|
2632 | }
|
---|
2633 | clone.nu = nu;
|
---|
2634 | clone.p = p;
|
---|
2635 | clone.shrinking = shrinking;
|
---|
2636 | clone.probability = probability;
|
---|
2637 | return clone;
|
---|
2638 | }
|
---|
2639 | }
|
---|
2640 | }
|
---|