1 | // Deflate.cs
|
---|
2 | // ------------------------------------------------------------------
|
---|
3 | //
|
---|
4 | // Copyright (c) 2009 Dino Chiesa and Microsoft Corporation.
|
---|
5 | // All rights reserved.
|
---|
6 | //
|
---|
7 | // This code module is part of DotNetZip, a zipfile class library.
|
---|
8 | //
|
---|
9 | // ------------------------------------------------------------------
|
---|
10 | //
|
---|
11 | // This code is licensed under the Microsoft Public License.
|
---|
12 | // See the file License.txt for the license details.
|
---|
13 | // More info on: http://dotnetzip.codeplex.com
|
---|
14 | //
|
---|
15 | // ------------------------------------------------------------------
|
---|
16 | //
|
---|
17 | // last saved (in emacs):
|
---|
18 | // Time-stamp: <2011-August-03 19:52:15>
|
---|
19 | //
|
---|
20 | // ------------------------------------------------------------------
|
---|
21 | //
|
---|
22 | // This module defines logic for handling the Deflate or compression.
|
---|
23 | //
|
---|
24 | // This code is based on multiple sources:
|
---|
25 | // - the original zlib v1.2.3 source, which is Copyright (C) 1995-2005 Jean-loup Gailly.
|
---|
26 | // - the original jzlib, which is Copyright (c) 2000-2003 ymnk, JCraft,Inc.
|
---|
27 | //
|
---|
28 | // However, this code is significantly different from both.
|
---|
29 | // The object model is not the same, and many of the behaviors are different.
|
---|
30 | //
|
---|
31 | // In keeping with the license for these other works, the copyrights for
|
---|
32 | // jzlib and zlib are here.
|
---|
33 | //
|
---|
34 | // -----------------------------------------------------------------------
|
---|
35 | // Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.
|
---|
36 | //
|
---|
37 | // Redistribution and use in source and binary forms, with or without
|
---|
38 | // modification, are permitted provided that the following conditions are met:
|
---|
39 | //
|
---|
40 | // 1. Redistributions of source code must retain the above copyright notice,
|
---|
41 | // this list of conditions and the following disclaimer.
|
---|
42 | //
|
---|
43 | // 2. Redistributions in binary form must reproduce the above copyright
|
---|
44 | // notice, this list of conditions and the following disclaimer in
|
---|
45 | // the documentation and/or other materials provided with the distribution.
|
---|
46 | //
|
---|
47 | // 3. The names of the authors may not be used to endorse or promote products
|
---|
48 | // derived from this software without specific prior written permission.
|
---|
49 | //
|
---|
50 | // THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
|
---|
51 | // INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
---|
52 | // FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
|
---|
53 | // INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
54 | // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
55 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
|
---|
56 | // OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
---|
57 | // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
---|
58 | // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
---|
59 | // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
60 | //
|
---|
61 | // -----------------------------------------------------------------------
|
---|
62 | //
|
---|
63 | // This program is based on zlib-1.1.3; credit to authors
|
---|
64 | // Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu)
|
---|
65 | // and contributors of zlib.
|
---|
66 | //
|
---|
67 | // -----------------------------------------------------------------------
|
---|
68 |
|
---|
69 |
|
---|
70 | using System;
|
---|
71 |
|
---|
72 | namespace OfficeOpenXml.Packaging.Ionic.Zlib
|
---|
73 | {
|
---|
74 |
|
---|
75 | internal enum BlockState
|
---|
76 | {
|
---|
77 | NeedMore = 0, // block not completed, need more input or more output
|
---|
78 | BlockDone, // block flush performed
|
---|
79 | FinishStarted, // finish started, need only more output at next deflate
|
---|
80 | FinishDone // finish done, accept no more input or output
|
---|
81 | }
|
---|
82 |
|
---|
83 | internal enum DeflateFlavor
|
---|
84 | {
|
---|
85 | Store,
|
---|
86 | Fast,
|
---|
87 | Slow
|
---|
88 | }
|
---|
89 |
|
---|
90 | internal sealed class DeflateManager
|
---|
91 | {
|
---|
92 | private static readonly int MEM_LEVEL_MAX = 9;
|
---|
93 | private static readonly int MEM_LEVEL_DEFAULT = 8;
|
---|
94 |
|
---|
95 | internal delegate BlockState CompressFunc(FlushType flush);
|
---|
96 |
|
---|
97 | internal class Config
|
---|
98 | {
|
---|
99 | // Use a faster search when the previous match is longer than this
|
---|
100 | internal int GoodLength; // reduce lazy search above this match length
|
---|
101 |
|
---|
102 | // Attempt to find a better match only when the current match is
|
---|
103 | // strictly smaller than this value. This mechanism is used only for
|
---|
104 | // compression levels >= 4. For levels 1,2,3: MaxLazy is actually
|
---|
105 | // MaxInsertLength. (See DeflateFast)
|
---|
106 |
|
---|
107 | internal int MaxLazy; // do not perform lazy search above this match length
|
---|
108 |
|
---|
109 | internal int NiceLength; // quit search above this match length
|
---|
110 |
|
---|
111 | // To speed up deflation, hash chains are never searched beyond this
|
---|
112 | // length. A higher limit improves compression ratio but degrades the speed.
|
---|
113 |
|
---|
114 | internal int MaxChainLength;
|
---|
115 |
|
---|
116 | internal DeflateFlavor Flavor;
|
---|
117 |
|
---|
118 | private Config(int goodLength, int maxLazy, int niceLength, int maxChainLength, DeflateFlavor flavor)
|
---|
119 | {
|
---|
120 | this.GoodLength = goodLength;
|
---|
121 | this.MaxLazy = maxLazy;
|
---|
122 | this.NiceLength = niceLength;
|
---|
123 | this.MaxChainLength = maxChainLength;
|
---|
124 | this.Flavor = flavor;
|
---|
125 | }
|
---|
126 |
|
---|
127 | public static Config Lookup(CompressionLevel level)
|
---|
128 | {
|
---|
129 | return Table[(int)level];
|
---|
130 | }
|
---|
131 |
|
---|
132 |
|
---|
133 | static Config()
|
---|
134 | {
|
---|
135 | Table = new Config[] {
|
---|
136 | new Config(0, 0, 0, 0, DeflateFlavor.Store),
|
---|
137 | new Config(4, 4, 8, 4, DeflateFlavor.Fast),
|
---|
138 | new Config(4, 5, 16, 8, DeflateFlavor.Fast),
|
---|
139 | new Config(4, 6, 32, 32, DeflateFlavor.Fast),
|
---|
140 |
|
---|
141 | new Config(4, 4, 16, 16, DeflateFlavor.Slow),
|
---|
142 | new Config(8, 16, 32, 32, DeflateFlavor.Slow),
|
---|
143 | new Config(8, 16, 128, 128, DeflateFlavor.Slow),
|
---|
144 | new Config(8, 32, 128, 256, DeflateFlavor.Slow),
|
---|
145 | new Config(32, 128, 258, 1024, DeflateFlavor.Slow),
|
---|
146 | new Config(32, 258, 258, 4096, DeflateFlavor.Slow),
|
---|
147 | };
|
---|
148 | }
|
---|
149 |
|
---|
150 | private static readonly Config[] Table;
|
---|
151 | }
|
---|
152 |
|
---|
153 |
|
---|
154 | private CompressFunc DeflateFunction;
|
---|
155 |
|
---|
156 | private static readonly System.String[] _ErrorMessage = new System.String[]
|
---|
157 | {
|
---|
158 | "need dictionary",
|
---|
159 | "stream end",
|
---|
160 | "",
|
---|
161 | "file error",
|
---|
162 | "stream error",
|
---|
163 | "data error",
|
---|
164 | "insufficient memory",
|
---|
165 | "buffer error",
|
---|
166 | "incompatible version",
|
---|
167 | ""
|
---|
168 | };
|
---|
169 |
|
---|
170 | // preset dictionary flag in zlib header
|
---|
171 | private static readonly int PRESET_DICT = 0x20;
|
---|
172 |
|
---|
173 | private static readonly int INIT_STATE = 42;
|
---|
174 | private static readonly int BUSY_STATE = 113;
|
---|
175 | private static readonly int FINISH_STATE = 666;
|
---|
176 |
|
---|
177 | // The deflate compression method
|
---|
178 | private static readonly int Z_DEFLATED = 8;
|
---|
179 |
|
---|
180 | private static readonly int STORED_BLOCK = 0;
|
---|
181 | private static readonly int STATIC_TREES = 1;
|
---|
182 | private static readonly int DYN_TREES = 2;
|
---|
183 |
|
---|
184 | // The three kinds of block type
|
---|
185 | private static readonly int Z_BINARY = 0;
|
---|
186 | private static readonly int Z_ASCII = 1;
|
---|
187 | private static readonly int Z_UNKNOWN = 2;
|
---|
188 |
|
---|
189 | private static readonly int Buf_size = 8 * 2;
|
---|
190 |
|
---|
191 | private static readonly int MIN_MATCH = 3;
|
---|
192 | private static readonly int MAX_MATCH = 258;
|
---|
193 |
|
---|
194 | private static readonly int MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
|
---|
195 |
|
---|
196 | private static readonly int HEAP_SIZE = (2 * InternalConstants.L_CODES + 1);
|
---|
197 |
|
---|
198 | private static readonly int END_BLOCK = 256;
|
---|
199 |
|
---|
200 | internal ZlibCodec _codec; // the zlib encoder/decoder
|
---|
201 | internal int status; // as the name implies
|
---|
202 | internal byte[] pending; // output still pending - waiting to be compressed
|
---|
203 | internal int nextPending; // index of next pending byte to output to the stream
|
---|
204 | internal int pendingCount; // number of bytes in the pending buffer
|
---|
205 |
|
---|
206 | internal sbyte data_type; // UNKNOWN, BINARY or ASCII
|
---|
207 | internal int last_flush; // value of flush param for previous deflate call
|
---|
208 |
|
---|
209 | internal int w_size; // LZ77 window size (32K by default)
|
---|
210 | internal int w_bits; // log2(w_size) (8..16)
|
---|
211 | internal int w_mask; // w_size - 1
|
---|
212 |
|
---|
213 | //internal byte[] dictionary;
|
---|
214 | internal byte[] window;
|
---|
215 |
|
---|
216 | // Sliding window. Input bytes are read into the second half of the window,
|
---|
217 | // and move to the first half later to keep a dictionary of at least wSize
|
---|
218 | // bytes. With this organization, matches are limited to a distance of
|
---|
219 | // wSize-MAX_MATCH bytes, but this ensures that IO is always
|
---|
220 | // performed with a length multiple of the block size.
|
---|
221 | //
|
---|
222 | // To do: use the user input buffer as sliding window.
|
---|
223 |
|
---|
224 | internal int window_size;
|
---|
225 | // Actual size of window: 2*wSize, except when the user input buffer
|
---|
226 | // is directly used as sliding window.
|
---|
227 |
|
---|
228 | internal short[] prev;
|
---|
229 | // Link to older string with same hash index. To limit the size of this
|
---|
230 | // array to 64K, this link is maintained only for the last 32K strings.
|
---|
231 | // An index in this array is thus a window index modulo 32K.
|
---|
232 |
|
---|
233 | internal short[] head; // Heads of the hash chains or NIL.
|
---|
234 |
|
---|
235 | internal int ins_h; // hash index of string to be inserted
|
---|
236 | internal int hash_size; // number of elements in hash table
|
---|
237 | internal int hash_bits; // log2(hash_size)
|
---|
238 | internal int hash_mask; // hash_size-1
|
---|
239 |
|
---|
240 | // Number of bits by which ins_h must be shifted at each input
|
---|
241 | // step. It must be such that after MIN_MATCH steps, the oldest
|
---|
242 | // byte no longer takes part in the hash key, that is:
|
---|
243 | // hash_shift * MIN_MATCH >= hash_bits
|
---|
244 | internal int hash_shift;
|
---|
245 |
|
---|
246 | // Window position at the beginning of the current output block. Gets
|
---|
247 | // negative when the window is moved backwards.
|
---|
248 |
|
---|
249 | internal int block_start;
|
---|
250 |
|
---|
251 | Config config;
|
---|
252 | internal int match_length; // length of best match
|
---|
253 | internal int prev_match; // previous match
|
---|
254 | internal int match_available; // set if previous match exists
|
---|
255 | internal int strstart; // start of string to insert into.....????
|
---|
256 | internal int match_start; // start of matching string
|
---|
257 | internal int lookahead; // number of valid bytes ahead in window
|
---|
258 |
|
---|
259 | // Length of the best match at previous step. Matches not greater than this
|
---|
260 | // are discarded. This is used in the lazy match evaluation.
|
---|
261 | internal int prev_length;
|
---|
262 |
|
---|
263 | // Insert new strings in the hash table only if the match length is not
|
---|
264 | // greater than this length. This saves time but degrades compression.
|
---|
265 | // max_insert_length is used only for compression levels <= 3.
|
---|
266 |
|
---|
267 | internal CompressionLevel compressionLevel; // compression level (1..9)
|
---|
268 | internal CompressionStrategy compressionStrategy; // favor or force Huffman coding
|
---|
269 |
|
---|
270 |
|
---|
271 | internal short[] dyn_ltree; // literal and length tree
|
---|
272 | internal short[] dyn_dtree; // distance tree
|
---|
273 | internal short[] bl_tree; // Huffman tree for bit lengths
|
---|
274 |
|
---|
275 | internal Tree treeLiterals = new Tree(); // desc for literal tree
|
---|
276 | internal Tree treeDistances = new Tree(); // desc for distance tree
|
---|
277 | internal Tree treeBitLengths = new Tree(); // desc for bit length tree
|
---|
278 |
|
---|
279 | // number of codes at each bit length for an optimal tree
|
---|
280 | internal short[] bl_count = new short[InternalConstants.MAX_BITS + 1];
|
---|
281 |
|
---|
282 | // heap used to build the Huffman trees
|
---|
283 | internal int[] heap = new int[2 * InternalConstants.L_CODES + 1];
|
---|
284 |
|
---|
285 | internal int heap_len; // number of elements in the heap
|
---|
286 | internal int heap_max; // element of largest frequency
|
---|
287 |
|
---|
288 | // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
|
---|
289 | // The same heap array is used to build all trees.
|
---|
290 |
|
---|
291 | // Depth of each subtree used as tie breaker for trees of equal frequency
|
---|
292 | internal sbyte[] depth = new sbyte[2 * InternalConstants.L_CODES + 1];
|
---|
293 |
|
---|
294 | internal int _lengthOffset; // index for literals or lengths
|
---|
295 |
|
---|
296 |
|
---|
297 | // Size of match buffer for literals/lengths. There are 4 reasons for
|
---|
298 | // limiting lit_bufsize to 64K:
|
---|
299 | // - frequencies can be kept in 16 bit counters
|
---|
300 | // - if compression is not successful for the first block, all input
|
---|
301 | // data is still in the window so we can still emit a stored block even
|
---|
302 | // when input comes from standard input. (This can also be done for
|
---|
303 | // all blocks if lit_bufsize is not greater than 32K.)
|
---|
304 | // - if compression is not successful for a file smaller than 64K, we can
|
---|
305 | // even emit a stored file instead of a stored block (saving 5 bytes).
|
---|
306 | // This is applicable only for zip (not gzip or zlib).
|
---|
307 | // - creating new Huffman trees less frequently may not provide fast
|
---|
308 | // adaptation to changes in the input data statistics. (Take for
|
---|
309 | // example a binary file with poorly compressible code followed by
|
---|
310 | // a highly compressible string table.) Smaller buffer sizes give
|
---|
311 | // fast adaptation but have of course the overhead of transmitting
|
---|
312 | // trees more frequently.
|
---|
313 |
|
---|
314 | internal int lit_bufsize;
|
---|
315 |
|
---|
316 | internal int last_lit; // running index in l_buf
|
---|
317 |
|
---|
318 | // Buffer for distances. To simplify the code, d_buf and l_buf have
|
---|
319 | // the same number of elements. To use different lengths, an extra flag
|
---|
320 | // array would be necessary.
|
---|
321 |
|
---|
322 | internal int _distanceOffset; // index into pending; points to distance data??
|
---|
323 |
|
---|
324 | internal int opt_len; // bit length of current block with optimal trees
|
---|
325 | internal int static_len; // bit length of current block with static trees
|
---|
326 | internal int matches; // number of string matches in current block
|
---|
327 | internal int last_eob_len; // bit length of EOB code for last block
|
---|
328 |
|
---|
329 | // Output buffer. bits are inserted starting at the bottom (least
|
---|
330 | // significant bits).
|
---|
331 | internal short bi_buf;
|
---|
332 |
|
---|
333 | // Number of valid bits in bi_buf. All bits above the last valid bit
|
---|
334 | // are always zero.
|
---|
335 | internal int bi_valid;
|
---|
336 |
|
---|
337 |
|
---|
338 | internal DeflateManager()
|
---|
339 | {
|
---|
340 | dyn_ltree = new short[HEAP_SIZE * 2];
|
---|
341 | dyn_dtree = new short[(2 * InternalConstants.D_CODES + 1) * 2]; // distance tree
|
---|
342 | bl_tree = new short[(2 * InternalConstants.BL_CODES + 1) * 2]; // Huffman tree for bit lengths
|
---|
343 | }
|
---|
344 |
|
---|
345 |
|
---|
346 | // lm_init
|
---|
347 | private void _InitializeLazyMatch()
|
---|
348 | {
|
---|
349 | window_size = 2 * w_size;
|
---|
350 |
|
---|
351 | // clear the hash - workitem 9063
|
---|
352 | Array.Clear(head, 0, hash_size);
|
---|
353 | //for (int i = 0; i < hash_size; i++) head[i] = 0;
|
---|
354 |
|
---|
355 | config = Config.Lookup(compressionLevel);
|
---|
356 | SetDeflater();
|
---|
357 |
|
---|
358 | strstart = 0;
|
---|
359 | block_start = 0;
|
---|
360 | lookahead = 0;
|
---|
361 | match_length = prev_length = MIN_MATCH - 1;
|
---|
362 | match_available = 0;
|
---|
363 | ins_h = 0;
|
---|
364 | }
|
---|
365 |
|
---|
366 | // Initialize the tree data structures for a new zlib stream.
|
---|
367 | private void _InitializeTreeData()
|
---|
368 | {
|
---|
369 | treeLiterals.dyn_tree = dyn_ltree;
|
---|
370 | treeLiterals.staticTree = StaticTree.Literals;
|
---|
371 |
|
---|
372 | treeDistances.dyn_tree = dyn_dtree;
|
---|
373 | treeDistances.staticTree = StaticTree.Distances;
|
---|
374 |
|
---|
375 | treeBitLengths.dyn_tree = bl_tree;
|
---|
376 | treeBitLengths.staticTree = StaticTree.BitLengths;
|
---|
377 |
|
---|
378 | bi_buf = 0;
|
---|
379 | bi_valid = 0;
|
---|
380 | last_eob_len = 8; // enough lookahead for inflate
|
---|
381 |
|
---|
382 | // Initialize the first block of the first file:
|
---|
383 | _InitializeBlocks();
|
---|
384 | }
|
---|
385 |
|
---|
386 | internal void _InitializeBlocks()
|
---|
387 | {
|
---|
388 | // Initialize the trees.
|
---|
389 | for (int i = 0; i < InternalConstants.L_CODES; i++)
|
---|
390 | dyn_ltree[i * 2] = 0;
|
---|
391 | for (int i = 0; i < InternalConstants.D_CODES; i++)
|
---|
392 | dyn_dtree[i * 2] = 0;
|
---|
393 | for (int i = 0; i < InternalConstants.BL_CODES; i++)
|
---|
394 | bl_tree[i * 2] = 0;
|
---|
395 |
|
---|
396 | dyn_ltree[END_BLOCK * 2] = 1;
|
---|
397 | opt_len = static_len = 0;
|
---|
398 | last_lit = matches = 0;
|
---|
399 | }
|
---|
400 |
|
---|
401 | // Restore the heap property by moving down the tree starting at node k,
|
---|
402 | // exchanging a node with the smallest of its two sons if necessary, stopping
|
---|
403 | // when the heap property is re-established (each father smaller than its
|
---|
404 | // two sons).
|
---|
405 | internal void pqdownheap(short[] tree, int k)
|
---|
406 | {
|
---|
407 | int v = heap[k];
|
---|
408 | int j = k << 1; // left son of k
|
---|
409 | while (j <= heap_len)
|
---|
410 | {
|
---|
411 | // Set j to the smallest of the two sons:
|
---|
412 | if (j < heap_len && _IsSmaller(tree, heap[j + 1], heap[j], depth))
|
---|
413 | {
|
---|
414 | j++;
|
---|
415 | }
|
---|
416 | // Exit if v is smaller than both sons
|
---|
417 | if (_IsSmaller(tree, v, heap[j], depth))
|
---|
418 | break;
|
---|
419 |
|
---|
420 | // Exchange v with the smallest son
|
---|
421 | heap[k] = heap[j]; k = j;
|
---|
422 | // And continue down the tree, setting j to the left son of k
|
---|
423 | j <<= 1;
|
---|
424 | }
|
---|
425 | heap[k] = v;
|
---|
426 | }
|
---|
427 |
|
---|
428 | internal static bool _IsSmaller(short[] tree, int n, int m, sbyte[] depth)
|
---|
429 | {
|
---|
430 | short tn2 = tree[n * 2];
|
---|
431 | short tm2 = tree[m * 2];
|
---|
432 | return (tn2 < tm2 || (tn2 == tm2 && depth[n] <= depth[m]));
|
---|
433 | }
|
---|
434 |
|
---|
435 |
|
---|
436 | // Scan a literal or distance tree to determine the frequencies of the codes
|
---|
437 | // in the bit length tree.
|
---|
438 | internal void scan_tree(short[] tree, int max_code)
|
---|
439 | {
|
---|
440 | int n; // iterates over all tree elements
|
---|
441 | int prevlen = -1; // last emitted length
|
---|
442 | int curlen; // length of current code
|
---|
443 | int nextlen = (int)tree[0 * 2 + 1]; // length of next code
|
---|
444 | int count = 0; // repeat count of the current code
|
---|
445 | int max_count = 7; // max repeat count
|
---|
446 | int min_count = 4; // min repeat count
|
---|
447 |
|
---|
448 | if (nextlen == 0)
|
---|
449 | {
|
---|
450 | max_count = 138; min_count = 3;
|
---|
451 | }
|
---|
452 | tree[(max_code + 1) * 2 + 1] = (short)0x7fff; // guard //??
|
---|
453 |
|
---|
454 | for (n = 0; n <= max_code; n++)
|
---|
455 | {
|
---|
456 | curlen = nextlen; nextlen = (int)tree[(n + 1) * 2 + 1];
|
---|
457 | if (++count < max_count && curlen == nextlen)
|
---|
458 | {
|
---|
459 | continue;
|
---|
460 | }
|
---|
461 | else if (count < min_count)
|
---|
462 | {
|
---|
463 | bl_tree[curlen * 2] = (short)(bl_tree[curlen * 2] + count);
|
---|
464 | }
|
---|
465 | else if (curlen != 0)
|
---|
466 | {
|
---|
467 | if (curlen != prevlen)
|
---|
468 | bl_tree[curlen * 2]++;
|
---|
469 | bl_tree[InternalConstants.REP_3_6 * 2]++;
|
---|
470 | }
|
---|
471 | else if (count <= 10)
|
---|
472 | {
|
---|
473 | bl_tree[InternalConstants.REPZ_3_10 * 2]++;
|
---|
474 | }
|
---|
475 | else
|
---|
476 | {
|
---|
477 | bl_tree[InternalConstants.REPZ_11_138 * 2]++;
|
---|
478 | }
|
---|
479 | count = 0; prevlen = curlen;
|
---|
480 | if (nextlen == 0)
|
---|
481 | {
|
---|
482 | max_count = 138; min_count = 3;
|
---|
483 | }
|
---|
484 | else if (curlen == nextlen)
|
---|
485 | {
|
---|
486 | max_count = 6; min_count = 3;
|
---|
487 | }
|
---|
488 | else
|
---|
489 | {
|
---|
490 | max_count = 7; min_count = 4;
|
---|
491 | }
|
---|
492 | }
|
---|
493 | }
|
---|
494 |
|
---|
495 | // Construct the Huffman tree for the bit lengths and return the index in
|
---|
496 | // bl_order of the last bit length code to send.
|
---|
497 | internal int build_bl_tree()
|
---|
498 | {
|
---|
499 | int max_blindex; // index of last bit length code of non zero freq
|
---|
500 |
|
---|
501 | // Determine the bit length frequencies for literal and distance trees
|
---|
502 | scan_tree(dyn_ltree, treeLiterals.max_code);
|
---|
503 | scan_tree(dyn_dtree, treeDistances.max_code);
|
---|
504 |
|
---|
505 | // Build the bit length tree:
|
---|
506 | treeBitLengths.build_tree(this);
|
---|
507 | // opt_len now includes the length of the tree representations, except
|
---|
508 | // the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
|
---|
509 |
|
---|
510 | // Determine the number of bit length codes to send. The pkzip format
|
---|
511 | // requires that at least 4 bit length codes be sent. (appnote.txt says
|
---|
512 | // 3 but the actual value used is 4.)
|
---|
513 | for (max_blindex = InternalConstants.BL_CODES - 1; max_blindex >= 3; max_blindex--)
|
---|
514 | {
|
---|
515 | if (bl_tree[Tree.bl_order[max_blindex] * 2 + 1] != 0)
|
---|
516 | break;
|
---|
517 | }
|
---|
518 | // Update opt_len to include the bit length tree and counts
|
---|
519 | opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
|
---|
520 |
|
---|
521 | return max_blindex;
|
---|
522 | }
|
---|
523 |
|
---|
524 |
|
---|
525 | // Send the header for a block using dynamic Huffman trees: the counts, the
|
---|
526 | // lengths of the bit length codes, the literal tree and the distance tree.
|
---|
527 | // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
---|
528 | internal void send_all_trees(int lcodes, int dcodes, int blcodes)
|
---|
529 | {
|
---|
530 | int rank; // index in bl_order
|
---|
531 |
|
---|
532 | send_bits(lcodes - 257, 5); // not +255 as stated in appnote.txt
|
---|
533 | send_bits(dcodes - 1, 5);
|
---|
534 | send_bits(blcodes - 4, 4); // not -3 as stated in appnote.txt
|
---|
535 | for (rank = 0; rank < blcodes; rank++)
|
---|
536 | {
|
---|
537 | send_bits(bl_tree[Tree.bl_order[rank] * 2 + 1], 3);
|
---|
538 | }
|
---|
539 | send_tree(dyn_ltree, lcodes - 1); // literal tree
|
---|
540 | send_tree(dyn_dtree, dcodes - 1); // distance tree
|
---|
541 | }
|
---|
542 |
|
---|
543 | // Send a literal or distance tree in compressed form, using the codes in
|
---|
544 | // bl_tree.
|
---|
545 | internal void send_tree(short[] tree, int max_code)
|
---|
546 | {
|
---|
547 | int n; // iterates over all tree elements
|
---|
548 | int prevlen = -1; // last emitted length
|
---|
549 | int curlen; // length of current code
|
---|
550 | int nextlen = tree[0 * 2 + 1]; // length of next code
|
---|
551 | int count = 0; // repeat count of the current code
|
---|
552 | int max_count = 7; // max repeat count
|
---|
553 | int min_count = 4; // min repeat count
|
---|
554 |
|
---|
555 | if (nextlen == 0)
|
---|
556 | {
|
---|
557 | max_count = 138; min_count = 3;
|
---|
558 | }
|
---|
559 |
|
---|
560 | for (n = 0; n <= max_code; n++)
|
---|
561 | {
|
---|
562 | curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1];
|
---|
563 | if (++count < max_count && curlen == nextlen)
|
---|
564 | {
|
---|
565 | continue;
|
---|
566 | }
|
---|
567 | else if (count < min_count)
|
---|
568 | {
|
---|
569 | do
|
---|
570 | {
|
---|
571 | send_code(curlen, bl_tree);
|
---|
572 | }
|
---|
573 | while (--count != 0);
|
---|
574 | }
|
---|
575 | else if (curlen != 0)
|
---|
576 | {
|
---|
577 | if (curlen != prevlen)
|
---|
578 | {
|
---|
579 | send_code(curlen, bl_tree); count--;
|
---|
580 | }
|
---|
581 | send_code(InternalConstants.REP_3_6, bl_tree);
|
---|
582 | send_bits(count - 3, 2);
|
---|
583 | }
|
---|
584 | else if (count <= 10)
|
---|
585 | {
|
---|
586 | send_code(InternalConstants.REPZ_3_10, bl_tree);
|
---|
587 | send_bits(count - 3, 3);
|
---|
588 | }
|
---|
589 | else
|
---|
590 | {
|
---|
591 | send_code(InternalConstants.REPZ_11_138, bl_tree);
|
---|
592 | send_bits(count - 11, 7);
|
---|
593 | }
|
---|
594 | count = 0; prevlen = curlen;
|
---|
595 | if (nextlen == 0)
|
---|
596 | {
|
---|
597 | max_count = 138; min_count = 3;
|
---|
598 | }
|
---|
599 | else if (curlen == nextlen)
|
---|
600 | {
|
---|
601 | max_count = 6; min_count = 3;
|
---|
602 | }
|
---|
603 | else
|
---|
604 | {
|
---|
605 | max_count = 7; min_count = 4;
|
---|
606 | }
|
---|
607 | }
|
---|
608 | }
|
---|
609 |
|
---|
610 | // Output a block of bytes on the stream.
|
---|
611 | // IN assertion: there is enough room in pending_buf.
|
---|
612 | private void put_bytes(byte[] p, int start, int len)
|
---|
613 | {
|
---|
614 | Array.Copy(p, start, pending, pendingCount, len);
|
---|
615 | pendingCount += len;
|
---|
616 | }
|
---|
617 |
|
---|
618 | #if NOTNEEDED
|
---|
619 | private void put_byte(byte c)
|
---|
620 | {
|
---|
621 | pending[pendingCount++] = c;
|
---|
622 | }
|
---|
623 | internal void put_short(int b)
|
---|
624 | {
|
---|
625 | unchecked
|
---|
626 | {
|
---|
627 | pending[pendingCount++] = (byte)b;
|
---|
628 | pending[pendingCount++] = (byte)(b >> 8);
|
---|
629 | }
|
---|
630 | }
|
---|
631 | internal void putShortMSB(int b)
|
---|
632 | {
|
---|
633 | unchecked
|
---|
634 | {
|
---|
635 | pending[pendingCount++] = (byte)(b >> 8);
|
---|
636 | pending[pendingCount++] = (byte)b;
|
---|
637 | }
|
---|
638 | }
|
---|
639 | #endif
|
---|
640 |
|
---|
641 | internal void send_code(int c, short[] tree)
|
---|
642 | {
|
---|
643 | int c2 = c * 2;
|
---|
644 | send_bits((tree[c2] & 0xffff), (tree[c2 + 1] & 0xffff));
|
---|
645 | }
|
---|
646 |
|
---|
647 | internal void send_bits(int value, int length)
|
---|
648 | {
|
---|
649 | int len = length;
|
---|
650 | unchecked
|
---|
651 | {
|
---|
652 | if (bi_valid > (int)Buf_size - len)
|
---|
653 | {
|
---|
654 | //int val = value;
|
---|
655 | // bi_buf |= (val << bi_valid);
|
---|
656 |
|
---|
657 | bi_buf |= (short)((value << bi_valid) & 0xffff);
|
---|
658 | //put_short(bi_buf);
|
---|
659 | pending[pendingCount++] = (byte)bi_buf;
|
---|
660 | pending[pendingCount++] = (byte)(bi_buf >> 8);
|
---|
661 |
|
---|
662 |
|
---|
663 | bi_buf = (short)((uint)value >> (Buf_size - bi_valid));
|
---|
664 | bi_valid += len - Buf_size;
|
---|
665 | }
|
---|
666 | else
|
---|
667 | {
|
---|
668 | // bi_buf |= (value) << bi_valid;
|
---|
669 | bi_buf |= (short)((value << bi_valid) & 0xffff);
|
---|
670 | bi_valid += len;
|
---|
671 | }
|
---|
672 | }
|
---|
673 | }
|
---|
674 |
|
---|
675 | // Send one empty static block to give enough lookahead for inflate.
|
---|
676 | // This takes 10 bits, of which 7 may remain in the bit buffer.
|
---|
677 | // The current inflate code requires 9 bits of lookahead. If the
|
---|
678 | // last two codes for the previous block (real code plus EOB) were coded
|
---|
679 | // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
|
---|
680 | // the last real code. In this case we send two empty static blocks instead
|
---|
681 | // of one. (There are no problems if the previous block is stored or fixed.)
|
---|
682 | // To simplify the code, we assume the worst case of last real code encoded
|
---|
683 | // on one bit only.
|
---|
684 | internal void _tr_align()
|
---|
685 | {
|
---|
686 | send_bits(STATIC_TREES << 1, 3);
|
---|
687 | send_code(END_BLOCK, StaticTree.lengthAndLiteralsTreeCodes);
|
---|
688 |
|
---|
689 | bi_flush();
|
---|
690 |
|
---|
691 | // Of the 10 bits for the empty block, we have already sent
|
---|
692 | // (10 - bi_valid) bits. The lookahead for the last real code (before
|
---|
693 | // the EOB of the previous block) was thus at least one plus the length
|
---|
694 | // of the EOB plus what we have just sent of the empty static block.
|
---|
695 | if (1 + last_eob_len + 10 - bi_valid < 9)
|
---|
696 | {
|
---|
697 | send_bits(STATIC_TREES << 1, 3);
|
---|
698 | send_code(END_BLOCK, StaticTree.lengthAndLiteralsTreeCodes);
|
---|
699 | bi_flush();
|
---|
700 | }
|
---|
701 | last_eob_len = 7;
|
---|
702 | }
|
---|
703 |
|
---|
704 |
|
---|
705 | // Save the match info and tally the frequency counts. Return true if
|
---|
706 | // the current block must be flushed.
|
---|
707 | internal bool _tr_tally(int dist, int lc)
|
---|
708 | {
|
---|
709 | pending[_distanceOffset + last_lit * 2] = unchecked((byte) ( (uint)dist >> 8 ) );
|
---|
710 | pending[_distanceOffset + last_lit * 2 + 1] = unchecked((byte)dist);
|
---|
711 | pending[_lengthOffset + last_lit] = unchecked((byte)lc);
|
---|
712 | last_lit++;
|
---|
713 |
|
---|
714 | if (dist == 0)
|
---|
715 | {
|
---|
716 | // lc is the unmatched char
|
---|
717 | dyn_ltree[lc * 2]++;
|
---|
718 | }
|
---|
719 | else
|
---|
720 | {
|
---|
721 | matches++;
|
---|
722 | // Here, lc is the match length - MIN_MATCH
|
---|
723 | dist--; // dist = match distance - 1
|
---|
724 | dyn_ltree[(Tree.LengthCode[lc] + InternalConstants.LITERALS + 1) * 2]++;
|
---|
725 | dyn_dtree[Tree.DistanceCode(dist) * 2]++;
|
---|
726 | }
|
---|
727 |
|
---|
728 | if ((last_lit & 0x1fff) == 0 && (int)compressionLevel > 2)
|
---|
729 | {
|
---|
730 | // Compute an upper bound for the compressed length
|
---|
731 | int out_length = last_lit << 3;
|
---|
732 | int in_length = strstart - block_start;
|
---|
733 | int dcode;
|
---|
734 | for (dcode = 0; dcode < InternalConstants.D_CODES; dcode++)
|
---|
735 | {
|
---|
736 | out_length = (int)(out_length + (int)dyn_dtree[dcode * 2] * (5L + Tree.ExtraDistanceBits[dcode]));
|
---|
737 | }
|
---|
738 | out_length >>= 3;
|
---|
739 | if ((matches < (last_lit / 2)) && out_length < in_length / 2)
|
---|
740 | return true;
|
---|
741 | }
|
---|
742 |
|
---|
743 | return (last_lit == lit_bufsize - 1) || (last_lit == lit_bufsize);
|
---|
744 | // dinoch - wraparound?
|
---|
745 | // We avoid equality with lit_bufsize because of wraparound at 64K
|
---|
746 | // on 16 bit machines and because stored blocks are restricted to
|
---|
747 | // 64K-1 bytes.
|
---|
748 | }
|
---|
749 |
|
---|
750 |
|
---|
751 |
|
---|
752 | // Send the block data compressed using the given Huffman trees
|
---|
753 | internal void send_compressed_block(short[] ltree, short[] dtree)
|
---|
754 | {
|
---|
755 | int distance; // distance of matched string
|
---|
756 | int lc; // match length or unmatched char (if dist == 0)
|
---|
757 | int lx = 0; // running index in l_buf
|
---|
758 | int code; // the code to send
|
---|
759 | int extra; // number of extra bits to send
|
---|
760 |
|
---|
761 | if (last_lit != 0)
|
---|
762 | {
|
---|
763 | do
|
---|
764 | {
|
---|
765 | int ix = _distanceOffset + lx * 2;
|
---|
766 | distance = ((pending[ix] << 8) & 0xff00) |
|
---|
767 | (pending[ix + 1] & 0xff);
|
---|
768 | lc = (pending[_lengthOffset + lx]) & 0xff;
|
---|
769 | lx++;
|
---|
770 |
|
---|
771 | if (distance == 0)
|
---|
772 | {
|
---|
773 | send_code(lc, ltree); // send a literal byte
|
---|
774 | }
|
---|
775 | else
|
---|
776 | {
|
---|
777 | // literal or match pair
|
---|
778 | // Here, lc is the match length - MIN_MATCH
|
---|
779 | code = Tree.LengthCode[lc];
|
---|
780 |
|
---|
781 | // send the length code
|
---|
782 | send_code(code + InternalConstants.LITERALS + 1, ltree);
|
---|
783 | extra = Tree.ExtraLengthBits[code];
|
---|
784 | if (extra != 0)
|
---|
785 | {
|
---|
786 | // send the extra length bits
|
---|
787 | lc -= Tree.LengthBase[code];
|
---|
788 | send_bits(lc, extra);
|
---|
789 | }
|
---|
790 | distance--; // dist is now the match distance - 1
|
---|
791 | code = Tree.DistanceCode(distance);
|
---|
792 |
|
---|
793 | // send the distance code
|
---|
794 | send_code(code, dtree);
|
---|
795 |
|
---|
796 | extra = Tree.ExtraDistanceBits[code];
|
---|
797 | if (extra != 0)
|
---|
798 | {
|
---|
799 | // send the extra distance bits
|
---|
800 | distance -= Tree.DistanceBase[code];
|
---|
801 | send_bits(distance, extra);
|
---|
802 | }
|
---|
803 | }
|
---|
804 |
|
---|
805 | // Check that the overlay between pending and d_buf+l_buf is ok:
|
---|
806 | }
|
---|
807 | while (lx < last_lit);
|
---|
808 | }
|
---|
809 |
|
---|
810 | send_code(END_BLOCK, ltree);
|
---|
811 | last_eob_len = ltree[END_BLOCK * 2 + 1];
|
---|
812 | }
|
---|
813 |
|
---|
814 |
|
---|
815 |
|
---|
816 | // Set the data type to ASCII or BINARY, using a crude approximation:
|
---|
817 | // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
|
---|
818 | // IN assertion: the fields freq of dyn_ltree are set and the total of all
|
---|
819 | // frequencies does not exceed 64K (to fit in an int on 16 bit machines).
|
---|
820 | internal void set_data_type()
|
---|
821 | {
|
---|
822 | int n = 0;
|
---|
823 | int ascii_freq = 0;
|
---|
824 | int bin_freq = 0;
|
---|
825 | while (n < 7)
|
---|
826 | {
|
---|
827 | bin_freq += dyn_ltree[n * 2]; n++;
|
---|
828 | }
|
---|
829 | while (n < 128)
|
---|
830 | {
|
---|
831 | ascii_freq += dyn_ltree[n * 2]; n++;
|
---|
832 | }
|
---|
833 | while (n < InternalConstants.LITERALS)
|
---|
834 | {
|
---|
835 | bin_freq += dyn_ltree[n * 2]; n++;
|
---|
836 | }
|
---|
837 | data_type = (sbyte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
|
---|
838 | }
|
---|
839 |
|
---|
840 |
|
---|
841 |
|
---|
842 | // Flush the bit buffer, keeping at most 7 bits in it.
|
---|
843 | internal void bi_flush()
|
---|
844 | {
|
---|
845 | if (bi_valid == 16)
|
---|
846 | {
|
---|
847 | pending[pendingCount++] = (byte)bi_buf;
|
---|
848 | pending[pendingCount++] = (byte)(bi_buf >> 8);
|
---|
849 | bi_buf = 0;
|
---|
850 | bi_valid = 0;
|
---|
851 | }
|
---|
852 | else if (bi_valid >= 8)
|
---|
853 | {
|
---|
854 | //put_byte((byte)bi_buf);
|
---|
855 | pending[pendingCount++] = (byte)bi_buf;
|
---|
856 | bi_buf >>= 8;
|
---|
857 | bi_valid -= 8;
|
---|
858 | }
|
---|
859 | }
|
---|
860 |
|
---|
861 | // Flush the bit buffer and align the output on a byte boundary
|
---|
862 | internal void bi_windup()
|
---|
863 | {
|
---|
864 | if (bi_valid > 8)
|
---|
865 | {
|
---|
866 | pending[pendingCount++] = (byte)bi_buf;
|
---|
867 | pending[pendingCount++] = (byte)(bi_buf >> 8);
|
---|
868 | }
|
---|
869 | else if (bi_valid > 0)
|
---|
870 | {
|
---|
871 | //put_byte((byte)bi_buf);
|
---|
872 | pending[pendingCount++] = (byte)bi_buf;
|
---|
873 | }
|
---|
874 | bi_buf = 0;
|
---|
875 | bi_valid = 0;
|
---|
876 | }
|
---|
877 |
|
---|
878 | // Copy a stored block, storing first the length and its
|
---|
879 | // one's complement if requested.
|
---|
880 | internal void copy_block(int buf, int len, bool header)
|
---|
881 | {
|
---|
882 | bi_windup(); // align on byte boundary
|
---|
883 | last_eob_len = 8; // enough lookahead for inflate
|
---|
884 |
|
---|
885 | if (header)
|
---|
886 | unchecked
|
---|
887 | {
|
---|
888 | //put_short((short)len);
|
---|
889 | pending[pendingCount++] = (byte)len;
|
---|
890 | pending[pendingCount++] = (byte)(len >> 8);
|
---|
891 | //put_short((short)~len);
|
---|
892 | pending[pendingCount++] = (byte)~len;
|
---|
893 | pending[pendingCount++] = (byte)(~len >> 8);
|
---|
894 | }
|
---|
895 |
|
---|
896 | put_bytes(window, buf, len);
|
---|
897 | }
|
---|
898 |
|
---|
899 | internal void flush_block_only(bool eof)
|
---|
900 | {
|
---|
901 | _tr_flush_block(block_start >= 0 ? block_start : -1, strstart - block_start, eof);
|
---|
902 | block_start = strstart;
|
---|
903 | _codec.flush_pending();
|
---|
904 | }
|
---|
905 |
|
---|
906 | // Copy without compression as much as possible from the input stream, return
|
---|
907 | // the current block state.
|
---|
908 | // This function does not insert new strings in the dictionary since
|
---|
909 | // uncompressible data is probably not useful. This function is used
|
---|
910 | // only for the level=0 compression option.
|
---|
911 | // NOTE: this function should be optimized to avoid extra copying from
|
---|
912 | // window to pending_buf.
|
---|
913 | internal BlockState DeflateNone(FlushType flush)
|
---|
914 | {
|
---|
915 | // Stored blocks are limited to 0xffff bytes, pending is limited
|
---|
916 | // to pending_buf_size, and each stored block has a 5 byte header:
|
---|
917 |
|
---|
918 | int max_block_size = 0xffff;
|
---|
919 | int max_start;
|
---|
920 |
|
---|
921 | if (max_block_size > pending.Length - 5)
|
---|
922 | {
|
---|
923 | max_block_size = pending.Length - 5;
|
---|
924 | }
|
---|
925 |
|
---|
926 | // Copy as much as possible from input to output:
|
---|
927 | while (true)
|
---|
928 | {
|
---|
929 | // Fill the window as much as possible:
|
---|
930 | if (lookahead <= 1)
|
---|
931 | {
|
---|
932 | _fillWindow();
|
---|
933 | if (lookahead == 0 && flush == FlushType.None)
|
---|
934 | return BlockState.NeedMore;
|
---|
935 | if (lookahead == 0)
|
---|
936 | break; // flush the current block
|
---|
937 | }
|
---|
938 |
|
---|
939 | strstart += lookahead;
|
---|
940 | lookahead = 0;
|
---|
941 |
|
---|
942 | // Emit a stored block if pending will be full:
|
---|
943 | max_start = block_start + max_block_size;
|
---|
944 | if (strstart == 0 || strstart >= max_start)
|
---|
945 | {
|
---|
946 | // strstart == 0 is possible when wraparound on 16-bit machine
|
---|
947 | lookahead = (int)(strstart - max_start);
|
---|
948 | strstart = (int)max_start;
|
---|
949 |
|
---|
950 | flush_block_only(false);
|
---|
951 | if (_codec.AvailableBytesOut == 0)
|
---|
952 | return BlockState.NeedMore;
|
---|
953 | }
|
---|
954 |
|
---|
955 | // Flush if we may have to slide, otherwise block_start may become
|
---|
956 | // negative and the data will be gone:
|
---|
957 | if (strstart - block_start >= w_size - MIN_LOOKAHEAD)
|
---|
958 | {
|
---|
959 | flush_block_only(false);
|
---|
960 | if (_codec.AvailableBytesOut == 0)
|
---|
961 | return BlockState.NeedMore;
|
---|
962 | }
|
---|
963 | }
|
---|
964 |
|
---|
965 | flush_block_only(flush == FlushType.Finish);
|
---|
966 | if (_codec.AvailableBytesOut == 0)
|
---|
967 | return (flush == FlushType.Finish) ? BlockState.FinishStarted : BlockState.NeedMore;
|
---|
968 |
|
---|
969 | return flush == FlushType.Finish ? BlockState.FinishDone : BlockState.BlockDone;
|
---|
970 | }
|
---|
971 |
|
---|
972 |
|
---|
973 | // Send a stored block
|
---|
974 | internal void _tr_stored_block(int buf, int stored_len, bool eof)
|
---|
975 | {
|
---|
976 | send_bits((STORED_BLOCK << 1) + (eof ? 1 : 0), 3); // send block type
|
---|
977 | copy_block(buf, stored_len, true); // with header
|
---|
978 | }
|
---|
979 |
|
---|
980 | // Determine the best encoding for the current block: dynamic trees, static
|
---|
981 | // trees or store, and output the encoded block to the zip file.
|
---|
982 | internal void _tr_flush_block(int buf, int stored_len, bool eof)
|
---|
983 | {
|
---|
984 | int opt_lenb, static_lenb; // opt_len and static_len in bytes
|
---|
985 | int max_blindex = 0; // index of last bit length code of non zero freq
|
---|
986 |
|
---|
987 | // Build the Huffman trees unless a stored block is forced
|
---|
988 | if (compressionLevel > 0)
|
---|
989 | {
|
---|
990 | // Check if the file is ascii or binary
|
---|
991 | if (data_type == Z_UNKNOWN)
|
---|
992 | set_data_type();
|
---|
993 |
|
---|
994 | // Construct the literal and distance trees
|
---|
995 | treeLiterals.build_tree(this);
|
---|
996 |
|
---|
997 | treeDistances.build_tree(this);
|
---|
998 |
|
---|
999 | // At this point, opt_len and static_len are the total bit lengths of
|
---|
1000 | // the compressed block data, excluding the tree representations.
|
---|
1001 |
|
---|
1002 | // Build the bit length tree for the above two trees, and get the index
|
---|
1003 | // in bl_order of the last bit length code to send.
|
---|
1004 | max_blindex = build_bl_tree();
|
---|
1005 |
|
---|
1006 | // Determine the best encoding. Compute first the block length in bytes
|
---|
1007 | opt_lenb = (opt_len + 3 + 7) >> 3;
|
---|
1008 | static_lenb = (static_len + 3 + 7) >> 3;
|
---|
1009 |
|
---|
1010 | if (static_lenb <= opt_lenb)
|
---|
1011 | opt_lenb = static_lenb;
|
---|
1012 | }
|
---|
1013 | else
|
---|
1014 | {
|
---|
1015 | opt_lenb = static_lenb = stored_len + 5; // force a stored block
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | if (stored_len + 4 <= opt_lenb && buf != -1)
|
---|
1019 | {
|
---|
1020 | // 4: two words for the lengths
|
---|
1021 | // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
---|
1022 | // Otherwise we can't have processed more than WSIZE input bytes since
|
---|
1023 | // the last block flush, because compression would have been
|
---|
1024 | // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
---|
1025 | // transform a block into a stored block.
|
---|
1026 | _tr_stored_block(buf, stored_len, eof);
|
---|
1027 | }
|
---|
1028 | else if (static_lenb == opt_lenb)
|
---|
1029 | {
|
---|
1030 | send_bits((STATIC_TREES << 1) + (eof ? 1 : 0), 3);
|
---|
1031 | send_compressed_block(StaticTree.lengthAndLiteralsTreeCodes, StaticTree.distTreeCodes);
|
---|
1032 | }
|
---|
1033 | else
|
---|
1034 | {
|
---|
1035 | send_bits((DYN_TREES << 1) + (eof ? 1 : 0), 3);
|
---|
1036 | send_all_trees(treeLiterals.max_code + 1, treeDistances.max_code + 1, max_blindex + 1);
|
---|
1037 | send_compressed_block(dyn_ltree, dyn_dtree);
|
---|
1038 | }
|
---|
1039 |
|
---|
1040 | // The above check is made mod 2^32, for files larger than 512 MB
|
---|
1041 | // and uLong implemented on 32 bits.
|
---|
1042 |
|
---|
1043 | _InitializeBlocks();
|
---|
1044 |
|
---|
1045 | if (eof)
|
---|
1046 | {
|
---|
1047 | bi_windup();
|
---|
1048 | }
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | // Fill the window when the lookahead becomes insufficient.
|
---|
1052 | // Updates strstart and lookahead.
|
---|
1053 | //
|
---|
1054 | // IN assertion: lookahead < MIN_LOOKAHEAD
|
---|
1055 | // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
|
---|
1056 | // At least one byte has been read, or avail_in == 0; reads are
|
---|
1057 | // performed for at least two bytes (required for the zip translate_eol
|
---|
1058 | // option -- not supported here).
|
---|
1059 | private void _fillWindow()
|
---|
1060 | {
|
---|
1061 | int n, m;
|
---|
1062 | int p;
|
---|
1063 | int more; // Amount of free space at the end of the window.
|
---|
1064 |
|
---|
1065 | do
|
---|
1066 | {
|
---|
1067 | more = (window_size - lookahead - strstart);
|
---|
1068 |
|
---|
1069 | // Deal with !@#$% 64K limit:
|
---|
1070 | if (more == 0 && strstart == 0 && lookahead == 0)
|
---|
1071 | {
|
---|
1072 | more = w_size;
|
---|
1073 | }
|
---|
1074 | else if (more == -1)
|
---|
1075 | {
|
---|
1076 | // Very unlikely, but possible on 16 bit machine if strstart == 0
|
---|
1077 | // and lookahead == 1 (input done one byte at time)
|
---|
1078 | more--;
|
---|
1079 |
|
---|
1080 | // If the window is almost full and there is insufficient lookahead,
|
---|
1081 | // move the upper half to the lower one to make room in the upper half.
|
---|
1082 | }
|
---|
1083 | else if (strstart >= w_size + w_size - MIN_LOOKAHEAD)
|
---|
1084 | {
|
---|
1085 | Array.Copy(window, w_size, window, 0, w_size);
|
---|
1086 | match_start -= w_size;
|
---|
1087 | strstart -= w_size; // we now have strstart >= MAX_DIST
|
---|
1088 | block_start -= w_size;
|
---|
1089 |
|
---|
1090 | // Slide the hash table (could be avoided with 32 bit values
|
---|
1091 | // at the expense of memory usage). We slide even when level == 0
|
---|
1092 | // to keep the hash table consistent if we switch back to level > 0
|
---|
1093 | // later. (Using level 0 permanently is not an optimal usage of
|
---|
1094 | // zlib, so we don't care about this pathological case.)
|
---|
1095 |
|
---|
1096 | n = hash_size;
|
---|
1097 | p = n;
|
---|
1098 | do
|
---|
1099 | {
|
---|
1100 | m = (head[--p] & 0xffff);
|
---|
1101 | head[p] = (short)((m >= w_size) ? (m - w_size) : 0);
|
---|
1102 | }
|
---|
1103 | while (--n != 0);
|
---|
1104 |
|
---|
1105 | n = w_size;
|
---|
1106 | p = n;
|
---|
1107 | do
|
---|
1108 | {
|
---|
1109 | m = (prev[--p] & 0xffff);
|
---|
1110 | prev[p] = (short)((m >= w_size) ? (m - w_size) : 0);
|
---|
1111 | // If n is not on any hash chain, prev[n] is garbage but
|
---|
1112 | // its value will never be used.
|
---|
1113 | }
|
---|
1114 | while (--n != 0);
|
---|
1115 | more += w_size;
|
---|
1116 | }
|
---|
1117 |
|
---|
1118 | if (_codec.AvailableBytesIn == 0)
|
---|
1119 | return;
|
---|
1120 |
|
---|
1121 | // If there was no sliding:
|
---|
1122 | // strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
|
---|
1123 | // more == window_size - lookahead - strstart
|
---|
1124 | // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
|
---|
1125 | // => more >= window_size - 2*WSIZE + 2
|
---|
1126 | // In the BIG_MEM or MMAP case (not yet supported),
|
---|
1127 | // window_size == input_size + MIN_LOOKAHEAD &&
|
---|
1128 | // strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
|
---|
1129 | // Otherwise, window_size == 2*WSIZE so more >= 2.
|
---|
1130 | // If there was sliding, more >= WSIZE. So in all cases, more >= 2.
|
---|
1131 |
|
---|
1132 | n = _codec.read_buf(window, strstart + lookahead, more);
|
---|
1133 | lookahead += n;
|
---|
1134 |
|
---|
1135 | // Initialize the hash value now that we have some input:
|
---|
1136 | if (lookahead >= MIN_MATCH)
|
---|
1137 | {
|
---|
1138 | ins_h = window[strstart] & 0xff;
|
---|
1139 | ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask;
|
---|
1140 | }
|
---|
1141 | // If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
|
---|
1142 | // but this is not important since only literal bytes will be emitted.
|
---|
1143 | }
|
---|
1144 | while (lookahead < MIN_LOOKAHEAD && _codec.AvailableBytesIn != 0);
|
---|
1145 | }
|
---|
1146 |
|
---|
1147 | // Compress as much as possible from the input stream, return the current
|
---|
1148 | // block state.
|
---|
1149 | // This function does not perform lazy evaluation of matches and inserts
|
---|
1150 | // new strings in the dictionary only for unmatched strings or for short
|
---|
1151 | // matches. It is used only for the fast compression options.
|
---|
1152 | internal BlockState DeflateFast(FlushType flush)
|
---|
1153 | {
|
---|
1154 | // short hash_head = 0; // head of the hash chain
|
---|
1155 | int hash_head = 0; // head of the hash chain
|
---|
1156 | bool bflush; // set if current block must be flushed
|
---|
1157 |
|
---|
1158 | while (true)
|
---|
1159 | {
|
---|
1160 | // Make sure that we always have enough lookahead, except
|
---|
1161 | // at the end of the input file. We need MAX_MATCH bytes
|
---|
1162 | // for the next match, plus MIN_MATCH bytes to insert the
|
---|
1163 | // string following the next match.
|
---|
1164 | if (lookahead < MIN_LOOKAHEAD)
|
---|
1165 | {
|
---|
1166 | _fillWindow();
|
---|
1167 | if (lookahead < MIN_LOOKAHEAD && flush == FlushType.None)
|
---|
1168 | {
|
---|
1169 | return BlockState.NeedMore;
|
---|
1170 | }
|
---|
1171 | if (lookahead == 0)
|
---|
1172 | break; // flush the current block
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | // Insert the string window[strstart .. strstart+2] in the
|
---|
1176 | // dictionary, and set hash_head to the head of the hash chain:
|
---|
1177 | if (lookahead >= MIN_MATCH)
|
---|
1178 | {
|
---|
1179 | ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
|
---|
1180 |
|
---|
1181 | // prev[strstart&w_mask]=hash_head=head[ins_h];
|
---|
1182 | hash_head = (head[ins_h] & 0xffff);
|
---|
1183 | prev[strstart & w_mask] = head[ins_h];
|
---|
1184 | head[ins_h] = unchecked((short)strstart);
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | // Find the longest match, discarding those <= prev_length.
|
---|
1188 | // At this point we have always match_length < MIN_MATCH
|
---|
1189 |
|
---|
1190 | if (hash_head != 0L && ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD)
|
---|
1191 | {
|
---|
1192 | // To simplify the code, we prevent matches with the string
|
---|
1193 | // of window index 0 (in particular we have to avoid a match
|
---|
1194 | // of the string with itself at the start of the input file).
|
---|
1195 | if (compressionStrategy != CompressionStrategy.HuffmanOnly)
|
---|
1196 | {
|
---|
1197 | match_length = longest_match(hash_head);
|
---|
1198 | }
|
---|
1199 | // longest_match() sets match_start
|
---|
1200 | }
|
---|
1201 | if (match_length >= MIN_MATCH)
|
---|
1202 | {
|
---|
1203 | // check_match(strstart, match_start, match_length);
|
---|
1204 |
|
---|
1205 | bflush = _tr_tally(strstart - match_start, match_length - MIN_MATCH);
|
---|
1206 |
|
---|
1207 | lookahead -= match_length;
|
---|
1208 |
|
---|
1209 | // Insert new strings in the hash table only if the match length
|
---|
1210 | // is not too large. This saves time but degrades compression.
|
---|
1211 | if (match_length <= config.MaxLazy && lookahead >= MIN_MATCH)
|
---|
1212 | {
|
---|
1213 | match_length--; // string at strstart already in hash table
|
---|
1214 | do
|
---|
1215 | {
|
---|
1216 | strstart++;
|
---|
1217 |
|
---|
1218 | ins_h = ((ins_h << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
|
---|
1219 | // prev[strstart&w_mask]=hash_head=head[ins_h];
|
---|
1220 | hash_head = (head[ins_h] & 0xffff);
|
---|
1221 | prev[strstart & w_mask] = head[ins_h];
|
---|
1222 | head[ins_h] = unchecked((short)strstart);
|
---|
1223 |
|
---|
1224 | // strstart never exceeds WSIZE-MAX_MATCH, so there are
|
---|
1225 | // always MIN_MATCH bytes ahead.
|
---|
1226 | }
|
---|
1227 | while (--match_length != 0);
|
---|
1228 | strstart++;
|
---|
1229 | }
|
---|
1230 | else
|
---|
1231 | {
|
---|
1232 | strstart += match_length;
|
---|
1233 | match_length = 0;
|
---|
1234 | ins_h = window[strstart] & 0xff;
|
---|
1235 |
|
---|
1236 | ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask;
|
---|
1237 | // If lookahead < MIN_MATCH, ins_h is garbage, but it does not
|
---|
1238 | // matter since it will be recomputed at next deflate call.
|
---|
1239 | }
|
---|
1240 | }
|
---|
1241 | else
|
---|
1242 | {
|
---|
1243 | // No match, output a literal byte
|
---|
1244 |
|
---|
1245 | bflush = _tr_tally(0, window[strstart] & 0xff);
|
---|
1246 | lookahead--;
|
---|
1247 | strstart++;
|
---|
1248 | }
|
---|
1249 | if (bflush)
|
---|
1250 | {
|
---|
1251 | flush_block_only(false);
|
---|
1252 | if (_codec.AvailableBytesOut == 0)
|
---|
1253 | return BlockState.NeedMore;
|
---|
1254 | }
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 | flush_block_only(flush == FlushType.Finish);
|
---|
1258 | if (_codec.AvailableBytesOut == 0)
|
---|
1259 | {
|
---|
1260 | if (flush == FlushType.Finish)
|
---|
1261 | return BlockState.FinishStarted;
|
---|
1262 | else
|
---|
1263 | return BlockState.NeedMore;
|
---|
1264 | }
|
---|
1265 | return flush == FlushType.Finish ? BlockState.FinishDone : BlockState.BlockDone;
|
---|
1266 | }
|
---|
1267 |
|
---|
1268 | // Same as above, but achieves better compression. We use a lazy
|
---|
1269 | // evaluation for matches: a match is finally adopted only if there is
|
---|
1270 | // no better match at the next window position.
|
---|
1271 | internal BlockState DeflateSlow(FlushType flush)
|
---|
1272 | {
|
---|
1273 | // short hash_head = 0; // head of hash chain
|
---|
1274 | int hash_head = 0; // head of hash chain
|
---|
1275 | bool bflush; // set if current block must be flushed
|
---|
1276 |
|
---|
1277 | // Process the input block.
|
---|
1278 | while (true)
|
---|
1279 | {
|
---|
1280 | // Make sure that we always have enough lookahead, except
|
---|
1281 | // at the end of the input file. We need MAX_MATCH bytes
|
---|
1282 | // for the next match, plus MIN_MATCH bytes to insert the
|
---|
1283 | // string following the next match.
|
---|
1284 |
|
---|
1285 | if (lookahead < MIN_LOOKAHEAD)
|
---|
1286 | {
|
---|
1287 | _fillWindow();
|
---|
1288 | if (lookahead < MIN_LOOKAHEAD && flush == FlushType.None)
|
---|
1289 | return BlockState.NeedMore;
|
---|
1290 |
|
---|
1291 | if (lookahead == 0)
|
---|
1292 | break; // flush the current block
|
---|
1293 | }
|
---|
1294 |
|
---|
1295 | // Insert the string window[strstart .. strstart+2] in the
|
---|
1296 | // dictionary, and set hash_head to the head of the hash chain:
|
---|
1297 |
|
---|
1298 | if (lookahead >= MIN_MATCH)
|
---|
1299 | {
|
---|
1300 | ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
|
---|
1301 | // prev[strstart&w_mask]=hash_head=head[ins_h];
|
---|
1302 | hash_head = (head[ins_h] & 0xffff);
|
---|
1303 | prev[strstart & w_mask] = head[ins_h];
|
---|
1304 | head[ins_h] = unchecked((short)strstart);
|
---|
1305 | }
|
---|
1306 |
|
---|
1307 | // Find the longest match, discarding those <= prev_length.
|
---|
1308 | prev_length = match_length;
|
---|
1309 | prev_match = match_start;
|
---|
1310 | match_length = MIN_MATCH - 1;
|
---|
1311 |
|
---|
1312 | if (hash_head != 0 && prev_length < config.MaxLazy &&
|
---|
1313 | ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD)
|
---|
1314 | {
|
---|
1315 | // To simplify the code, we prevent matches with the string
|
---|
1316 | // of window index 0 (in particular we have to avoid a match
|
---|
1317 | // of the string with itself at the start of the input file).
|
---|
1318 |
|
---|
1319 | if (compressionStrategy != CompressionStrategy.HuffmanOnly)
|
---|
1320 | {
|
---|
1321 | match_length = longest_match(hash_head);
|
---|
1322 | }
|
---|
1323 | // longest_match() sets match_start
|
---|
1324 |
|
---|
1325 | if (match_length <= 5 && (compressionStrategy == CompressionStrategy.Filtered ||
|
---|
1326 | (match_length == MIN_MATCH && strstart - match_start > 4096)))
|
---|
1327 | {
|
---|
1328 |
|
---|
1329 | // If prev_match is also MIN_MATCH, match_start is garbage
|
---|
1330 | // but we will ignore the current match anyway.
|
---|
1331 | match_length = MIN_MATCH - 1;
|
---|
1332 | }
|
---|
1333 | }
|
---|
1334 |
|
---|
1335 | // If there was a match at the previous step and the current
|
---|
1336 | // match is not better, output the previous match:
|
---|
1337 | if (prev_length >= MIN_MATCH && match_length <= prev_length)
|
---|
1338 | {
|
---|
1339 | int max_insert = strstart + lookahead - MIN_MATCH;
|
---|
1340 | // Do not insert strings in hash table beyond this.
|
---|
1341 |
|
---|
1342 | // check_match(strstart-1, prev_match, prev_length);
|
---|
1343 |
|
---|
1344 | bflush = _tr_tally(strstart - 1 - prev_match, prev_length - MIN_MATCH);
|
---|
1345 |
|
---|
1346 | // Insert in hash table all strings up to the end of the match.
|
---|
1347 | // strstart-1 and strstart are already inserted. If there is not
|
---|
1348 | // enough lookahead, the last two strings are not inserted in
|
---|
1349 | // the hash table.
|
---|
1350 | lookahead -= (prev_length - 1);
|
---|
1351 | prev_length -= 2;
|
---|
1352 | do
|
---|
1353 | {
|
---|
1354 | if (++strstart <= max_insert)
|
---|
1355 | {
|
---|
1356 | ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
|
---|
1357 | //prev[strstart&w_mask]=hash_head=head[ins_h];
|
---|
1358 | hash_head = (head[ins_h] & 0xffff);
|
---|
1359 | prev[strstart & w_mask] = head[ins_h];
|
---|
1360 | head[ins_h] = unchecked((short)strstart);
|
---|
1361 | }
|
---|
1362 | }
|
---|
1363 | while (--prev_length != 0);
|
---|
1364 | match_available = 0;
|
---|
1365 | match_length = MIN_MATCH - 1;
|
---|
1366 | strstart++;
|
---|
1367 |
|
---|
1368 | if (bflush)
|
---|
1369 | {
|
---|
1370 | flush_block_only(false);
|
---|
1371 | if (_codec.AvailableBytesOut == 0)
|
---|
1372 | return BlockState.NeedMore;
|
---|
1373 | }
|
---|
1374 | }
|
---|
1375 | else if (match_available != 0)
|
---|
1376 | {
|
---|
1377 |
|
---|
1378 | // If there was no match at the previous position, output a
|
---|
1379 | // single literal. If there was a match but the current match
|
---|
1380 | // is longer, truncate the previous match to a single literal.
|
---|
1381 |
|
---|
1382 | bflush = _tr_tally(0, window[strstart - 1] & 0xff);
|
---|
1383 |
|
---|
1384 | if (bflush)
|
---|
1385 | {
|
---|
1386 | flush_block_only(false);
|
---|
1387 | }
|
---|
1388 | strstart++;
|
---|
1389 | lookahead--;
|
---|
1390 | if (_codec.AvailableBytesOut == 0)
|
---|
1391 | return BlockState.NeedMore;
|
---|
1392 | }
|
---|
1393 | else
|
---|
1394 | {
|
---|
1395 | // There is no previous match to compare with, wait for
|
---|
1396 | // the next step to decide.
|
---|
1397 |
|
---|
1398 | match_available = 1;
|
---|
1399 | strstart++;
|
---|
1400 | lookahead--;
|
---|
1401 | }
|
---|
1402 | }
|
---|
1403 |
|
---|
1404 | if (match_available != 0)
|
---|
1405 | {
|
---|
1406 | bflush = _tr_tally(0, window[strstart - 1] & 0xff);
|
---|
1407 | match_available = 0;
|
---|
1408 | }
|
---|
1409 | flush_block_only(flush == FlushType.Finish);
|
---|
1410 |
|
---|
1411 | if (_codec.AvailableBytesOut == 0)
|
---|
1412 | {
|
---|
1413 | if (flush == FlushType.Finish)
|
---|
1414 | return BlockState.FinishStarted;
|
---|
1415 | else
|
---|
1416 | return BlockState.NeedMore;
|
---|
1417 | }
|
---|
1418 |
|
---|
1419 | return flush == FlushType.Finish ? BlockState.FinishDone : BlockState.BlockDone;
|
---|
1420 | }
|
---|
1421 |
|
---|
1422 |
|
---|
1423 | internal int longest_match(int cur_match)
|
---|
1424 | {
|
---|
1425 | int chain_length = config.MaxChainLength; // max hash chain length
|
---|
1426 | int scan = strstart; // current string
|
---|
1427 | int match; // matched string
|
---|
1428 | int len; // length of current match
|
---|
1429 | int best_len = prev_length; // best match length so far
|
---|
1430 | int limit = strstart > (w_size - MIN_LOOKAHEAD) ? strstart - (w_size - MIN_LOOKAHEAD) : 0;
|
---|
1431 |
|
---|
1432 | int niceLength = config.NiceLength;
|
---|
1433 |
|
---|
1434 | // Stop when cur_match becomes <= limit. To simplify the code,
|
---|
1435 | // we prevent matches with the string of window index 0.
|
---|
1436 |
|
---|
1437 | int wmask = w_mask;
|
---|
1438 |
|
---|
1439 | int strend = strstart + MAX_MATCH;
|
---|
1440 | byte scan_end1 = window[scan + best_len - 1];
|
---|
1441 | byte scan_end = window[scan + best_len];
|
---|
1442 |
|
---|
1443 | // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
|
---|
1444 | // It is easy to get rid of this optimization if necessary.
|
---|
1445 |
|
---|
1446 | // Do not waste too much time if we already have a good match:
|
---|
1447 | if (prev_length >= config.GoodLength)
|
---|
1448 | {
|
---|
1449 | chain_length >>= 2;
|
---|
1450 | }
|
---|
1451 |
|
---|
1452 | // Do not look for matches beyond the end of the input. This is necessary
|
---|
1453 | // to make deflate deterministic.
|
---|
1454 | if (niceLength > lookahead)
|
---|
1455 | niceLength = lookahead;
|
---|
1456 |
|
---|
1457 | do
|
---|
1458 | {
|
---|
1459 | match = cur_match;
|
---|
1460 |
|
---|
1461 | // Skip to next match if the match length cannot increase
|
---|
1462 | // or if the match length is less than 2:
|
---|
1463 | if (window[match + best_len] != scan_end ||
|
---|
1464 | window[match + best_len - 1] != scan_end1 ||
|
---|
1465 | window[match] != window[scan] ||
|
---|
1466 | window[++match] != window[scan + 1])
|
---|
1467 | continue;
|
---|
1468 |
|
---|
1469 | // The check at best_len-1 can be removed because it will be made
|
---|
1470 | // again later. (This heuristic is not always a win.)
|
---|
1471 | // It is not necessary to compare scan[2] and match[2] since they
|
---|
1472 | // are always equal when the other bytes match, given that
|
---|
1473 | // the hash keys are equal and that HASH_BITS >= 8.
|
---|
1474 | scan += 2; match++;
|
---|
1475 |
|
---|
1476 | // We check for insufficient lookahead only every 8th comparison;
|
---|
1477 | // the 256th check will be made at strstart+258.
|
---|
1478 | do
|
---|
1479 | {
|
---|
1480 | }
|
---|
1481 | while (window[++scan] == window[++match] &&
|
---|
1482 | window[++scan] == window[++match] &&
|
---|
1483 | window[++scan] == window[++match] &&
|
---|
1484 | window[++scan] == window[++match] &&
|
---|
1485 | window[++scan] == window[++match] &&
|
---|
1486 | window[++scan] == window[++match] &&
|
---|
1487 | window[++scan] == window[++match] &&
|
---|
1488 | window[++scan] == window[++match] && scan < strend);
|
---|
1489 |
|
---|
1490 | len = MAX_MATCH - (int)(strend - scan);
|
---|
1491 | scan = strend - MAX_MATCH;
|
---|
1492 |
|
---|
1493 | if (len > best_len)
|
---|
1494 | {
|
---|
1495 | match_start = cur_match;
|
---|
1496 | best_len = len;
|
---|
1497 | if (len >= niceLength)
|
---|
1498 | break;
|
---|
1499 | scan_end1 = window[scan + best_len - 1];
|
---|
1500 | scan_end = window[scan + best_len];
|
---|
1501 | }
|
---|
1502 | }
|
---|
1503 | while ((cur_match = (prev[cur_match & wmask] & 0xffff)) > limit && --chain_length != 0);
|
---|
1504 |
|
---|
1505 | if (best_len <= lookahead)
|
---|
1506 | return best_len;
|
---|
1507 | return lookahead;
|
---|
1508 | }
|
---|
1509 |
|
---|
1510 |
|
---|
1511 | private bool Rfc1950BytesEmitted = false;
|
---|
1512 | private bool _WantRfc1950HeaderBytes = true;
|
---|
1513 | internal bool WantRfc1950HeaderBytes
|
---|
1514 | {
|
---|
1515 | get { return _WantRfc1950HeaderBytes; }
|
---|
1516 | set { _WantRfc1950HeaderBytes = value; }
|
---|
1517 | }
|
---|
1518 |
|
---|
1519 |
|
---|
1520 | internal int Initialize(ZlibCodec codec, CompressionLevel level)
|
---|
1521 | {
|
---|
1522 | return Initialize(codec, level, ZlibConstants.WindowBitsMax);
|
---|
1523 | }
|
---|
1524 |
|
---|
1525 | internal int Initialize(ZlibCodec codec, CompressionLevel level, int bits)
|
---|
1526 | {
|
---|
1527 | return Initialize(codec, level, bits, MEM_LEVEL_DEFAULT, CompressionStrategy.Default);
|
---|
1528 | }
|
---|
1529 |
|
---|
1530 | internal int Initialize(ZlibCodec codec, CompressionLevel level, int bits, CompressionStrategy compressionStrategy)
|
---|
1531 | {
|
---|
1532 | return Initialize(codec, level, bits, MEM_LEVEL_DEFAULT, compressionStrategy);
|
---|
1533 | }
|
---|
1534 |
|
---|
1535 | internal int Initialize(ZlibCodec codec, CompressionLevel level, int windowBits, int memLevel, CompressionStrategy strategy)
|
---|
1536 | {
|
---|
1537 | _codec = codec;
|
---|
1538 | _codec.Message = null;
|
---|
1539 |
|
---|
1540 | // validation
|
---|
1541 | if (windowBits < 9 || windowBits > 15)
|
---|
1542 | throw new ZlibException("windowBits must be in the range 9..15.");
|
---|
1543 |
|
---|
1544 | if (memLevel < 1 || memLevel > MEM_LEVEL_MAX)
|
---|
1545 | throw new ZlibException(String.Format("memLevel must be in the range 1.. {0}", MEM_LEVEL_MAX));
|
---|
1546 |
|
---|
1547 | _codec.dstate = this;
|
---|
1548 |
|
---|
1549 | w_bits = windowBits;
|
---|
1550 | w_size = 1 << w_bits;
|
---|
1551 | w_mask = w_size - 1;
|
---|
1552 |
|
---|
1553 | hash_bits = memLevel + 7;
|
---|
1554 | hash_size = 1 << hash_bits;
|
---|
1555 | hash_mask = hash_size - 1;
|
---|
1556 | hash_shift = ((hash_bits + MIN_MATCH - 1) / MIN_MATCH);
|
---|
1557 |
|
---|
1558 | window = new byte[w_size * 2];
|
---|
1559 | prev = new short[w_size];
|
---|
1560 | head = new short[hash_size];
|
---|
1561 |
|
---|
1562 | // for memLevel==8, this will be 16384, 16k
|
---|
1563 | lit_bufsize = 1 << (memLevel + 6);
|
---|
1564 |
|
---|
1565 | // Use a single array as the buffer for data pending compression,
|
---|
1566 | // the output distance codes, and the output length codes (aka tree).
|
---|
1567 | // orig comment: This works just fine since the average
|
---|
1568 | // output size for (length,distance) codes is <= 24 bits.
|
---|
1569 | pending = new byte[lit_bufsize * 4];
|
---|
1570 | _distanceOffset = lit_bufsize;
|
---|
1571 | _lengthOffset = (1 + 2) * lit_bufsize;
|
---|
1572 |
|
---|
1573 | // So, for memLevel 8, the length of the pending buffer is 65536. 64k.
|
---|
1574 | // The first 16k are pending bytes.
|
---|
1575 | // The middle slice, of 32k, is used for distance codes.
|
---|
1576 | // The final 16k are length codes.
|
---|
1577 |
|
---|
1578 | this.compressionLevel = level;
|
---|
1579 | this.compressionStrategy = strategy;
|
---|
1580 |
|
---|
1581 | Reset();
|
---|
1582 | return ZlibConstants.Z_OK;
|
---|
1583 | }
|
---|
1584 |
|
---|
1585 |
|
---|
1586 | internal void Reset()
|
---|
1587 | {
|
---|
1588 | _codec.TotalBytesIn = _codec.TotalBytesOut = 0;
|
---|
1589 | _codec.Message = null;
|
---|
1590 | //strm.data_type = Z_UNKNOWN;
|
---|
1591 |
|
---|
1592 | pendingCount = 0;
|
---|
1593 | nextPending = 0;
|
---|
1594 |
|
---|
1595 | Rfc1950BytesEmitted = false;
|
---|
1596 |
|
---|
1597 | status = (WantRfc1950HeaderBytes) ? INIT_STATE : BUSY_STATE;
|
---|
1598 | _codec._Adler32 = Adler.Adler32(0, null, 0, 0);
|
---|
1599 |
|
---|
1600 | last_flush = (int)FlushType.None;
|
---|
1601 |
|
---|
1602 | _InitializeTreeData();
|
---|
1603 | _InitializeLazyMatch();
|
---|
1604 | }
|
---|
1605 |
|
---|
1606 |
|
---|
1607 | internal int End()
|
---|
1608 | {
|
---|
1609 | if (status != INIT_STATE && status != BUSY_STATE && status != FINISH_STATE)
|
---|
1610 | {
|
---|
1611 | return ZlibConstants.Z_STREAM_ERROR;
|
---|
1612 | }
|
---|
1613 | // Deallocate in reverse order of allocations:
|
---|
1614 | pending = null;
|
---|
1615 | head = null;
|
---|
1616 | prev = null;
|
---|
1617 | window = null;
|
---|
1618 | // free
|
---|
1619 | // dstate=null;
|
---|
1620 | return status == BUSY_STATE ? ZlibConstants.Z_DATA_ERROR : ZlibConstants.Z_OK;
|
---|
1621 | }
|
---|
1622 |
|
---|
1623 |
|
---|
1624 | private void SetDeflater()
|
---|
1625 | {
|
---|
1626 | switch (config.Flavor)
|
---|
1627 | {
|
---|
1628 | case DeflateFlavor.Store:
|
---|
1629 | DeflateFunction = DeflateNone;
|
---|
1630 | break;
|
---|
1631 | case DeflateFlavor.Fast:
|
---|
1632 | DeflateFunction = DeflateFast;
|
---|
1633 | break;
|
---|
1634 | case DeflateFlavor.Slow:
|
---|
1635 | DeflateFunction = DeflateSlow;
|
---|
1636 | break;
|
---|
1637 | }
|
---|
1638 | }
|
---|
1639 |
|
---|
1640 |
|
---|
1641 | internal int SetParams(CompressionLevel level, CompressionStrategy strategy)
|
---|
1642 | {
|
---|
1643 | int result = ZlibConstants.Z_OK;
|
---|
1644 |
|
---|
1645 | if (compressionLevel != level)
|
---|
1646 | {
|
---|
1647 | Config newConfig = Config.Lookup(level);
|
---|
1648 |
|
---|
1649 | // change in the deflate flavor (Fast vs slow vs none)?
|
---|
1650 | if (newConfig.Flavor != config.Flavor && _codec.TotalBytesIn != 0)
|
---|
1651 | {
|
---|
1652 | // Flush the last buffer:
|
---|
1653 | result = _codec.Deflate(FlushType.Partial);
|
---|
1654 | }
|
---|
1655 |
|
---|
1656 | compressionLevel = level;
|
---|
1657 | config = newConfig;
|
---|
1658 | SetDeflater();
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | // no need to flush with change in strategy? Really?
|
---|
1662 | compressionStrategy = strategy;
|
---|
1663 |
|
---|
1664 | return result;
|
---|
1665 | }
|
---|
1666 |
|
---|
1667 |
|
---|
1668 | internal int SetDictionary(byte[] dictionary)
|
---|
1669 | {
|
---|
1670 | int length = dictionary.Length;
|
---|
1671 | int index = 0;
|
---|
1672 |
|
---|
1673 | if (dictionary == null || status != INIT_STATE)
|
---|
1674 | throw new ZlibException("Stream error.");
|
---|
1675 |
|
---|
1676 | _codec._Adler32 = Adler.Adler32(_codec._Adler32, dictionary, 0, dictionary.Length);
|
---|
1677 |
|
---|
1678 | if (length < MIN_MATCH)
|
---|
1679 | return ZlibConstants.Z_OK;
|
---|
1680 | if (length > w_size - MIN_LOOKAHEAD)
|
---|
1681 | {
|
---|
1682 | length = w_size - MIN_LOOKAHEAD;
|
---|
1683 | index = dictionary.Length - length; // use the tail of the dictionary
|
---|
1684 | }
|
---|
1685 | Array.Copy(dictionary, index, window, 0, length);
|
---|
1686 | strstart = length;
|
---|
1687 | block_start = length;
|
---|
1688 |
|
---|
1689 | // Insert all strings in the hash table (except for the last two bytes).
|
---|
1690 | // s->lookahead stays null, so s->ins_h will be recomputed at the next
|
---|
1691 | // call of fill_window.
|
---|
1692 |
|
---|
1693 | ins_h = window[0] & 0xff;
|
---|
1694 | ins_h = (((ins_h) << hash_shift) ^ (window[1] & 0xff)) & hash_mask;
|
---|
1695 |
|
---|
1696 | for (int n = 0; n <= length - MIN_MATCH; n++)
|
---|
1697 | {
|
---|
1698 | ins_h = (((ins_h) << hash_shift) ^ (window[(n) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
|
---|
1699 | prev[n & w_mask] = head[ins_h];
|
---|
1700 | head[ins_h] = (short)n;
|
---|
1701 | }
|
---|
1702 | return ZlibConstants.Z_OK;
|
---|
1703 | }
|
---|
1704 |
|
---|
1705 |
|
---|
1706 |
|
---|
1707 | internal int Deflate(FlushType flush)
|
---|
1708 | {
|
---|
1709 | int old_flush;
|
---|
1710 |
|
---|
1711 | if (_codec.OutputBuffer == null ||
|
---|
1712 | (_codec.InputBuffer == null && _codec.AvailableBytesIn != 0) ||
|
---|
1713 | (status == FINISH_STATE && flush != FlushType.Finish))
|
---|
1714 | {
|
---|
1715 | _codec.Message = _ErrorMessage[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_STREAM_ERROR)];
|
---|
1716 | throw new ZlibException(String.Format("Something is fishy. [{0}]", _codec.Message));
|
---|
1717 | }
|
---|
1718 | if (_codec.AvailableBytesOut == 0)
|
---|
1719 | {
|
---|
1720 | _codec.Message = _ErrorMessage[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_BUF_ERROR)];
|
---|
1721 | throw new ZlibException("OutputBuffer is full (AvailableBytesOut == 0)");
|
---|
1722 | }
|
---|
1723 |
|
---|
1724 | old_flush = last_flush;
|
---|
1725 | last_flush = (int)flush;
|
---|
1726 |
|
---|
1727 | // Write the zlib (rfc1950) header bytes
|
---|
1728 | if (status == INIT_STATE)
|
---|
1729 | {
|
---|
1730 | int header = (Z_DEFLATED + ((w_bits - 8) << 4)) << 8;
|
---|
1731 | int level_flags = (((int)compressionLevel - 1) & 0xff) >> 1;
|
---|
1732 |
|
---|
1733 | if (level_flags > 3)
|
---|
1734 | level_flags = 3;
|
---|
1735 | header |= (level_flags << 6);
|
---|
1736 | if (strstart != 0)
|
---|
1737 | header |= PRESET_DICT;
|
---|
1738 | header += 31 - (header % 31);
|
---|
1739 |
|
---|
1740 | status = BUSY_STATE;
|
---|
1741 | //putShortMSB(header);
|
---|
1742 | unchecked
|
---|
1743 | {
|
---|
1744 | pending[pendingCount++] = (byte)(header >> 8);
|
---|
1745 | pending[pendingCount++] = (byte)header;
|
---|
1746 | }
|
---|
1747 | // Save the adler32 of the preset dictionary:
|
---|
1748 | if (strstart != 0)
|
---|
1749 | {
|
---|
1750 | pending[pendingCount++] = (byte)((_codec._Adler32 & 0xFF000000) >> 24);
|
---|
1751 | pending[pendingCount++] = (byte)((_codec._Adler32 & 0x00FF0000) >> 16);
|
---|
1752 | pending[pendingCount++] = (byte)((_codec._Adler32 & 0x0000FF00) >> 8);
|
---|
1753 | pending[pendingCount++] = (byte)(_codec._Adler32 & 0x000000FF);
|
---|
1754 | }
|
---|
1755 | _codec._Adler32 = Adler.Adler32(0, null, 0, 0);
|
---|
1756 | }
|
---|
1757 |
|
---|
1758 | // Flush as much pending output as possible
|
---|
1759 | if (pendingCount != 0)
|
---|
1760 | {
|
---|
1761 | _codec.flush_pending();
|
---|
1762 | if (_codec.AvailableBytesOut == 0)
|
---|
1763 | {
|
---|
1764 | //System.out.println(" avail_out==0");
|
---|
1765 | // Since avail_out is 0, deflate will be called again with
|
---|
1766 | // more output space, but possibly with both pending and
|
---|
1767 | // avail_in equal to zero. There won't be anything to do,
|
---|
1768 | // but this is not an error situation so make sure we
|
---|
1769 | // return OK instead of BUF_ERROR at next call of deflate:
|
---|
1770 | last_flush = -1;
|
---|
1771 | return ZlibConstants.Z_OK;
|
---|
1772 | }
|
---|
1773 |
|
---|
1774 | // Make sure there is something to do and avoid duplicate consecutive
|
---|
1775 | // flushes. For repeated and useless calls with Z_FINISH, we keep
|
---|
1776 | // returning Z_STREAM_END instead of Z_BUFF_ERROR.
|
---|
1777 | }
|
---|
1778 | else if (_codec.AvailableBytesIn == 0 &&
|
---|
1779 | (int)flush <= old_flush &&
|
---|
1780 | flush != FlushType.Finish)
|
---|
1781 | {
|
---|
1782 | // workitem 8557
|
---|
1783 | //
|
---|
1784 | // Not sure why this needs to be an error. pendingCount == 0, which
|
---|
1785 | // means there's nothing to deflate. And the caller has not asked
|
---|
1786 | // for a FlushType.Finish, but... that seems very non-fatal. We
|
---|
1787 | // can just say "OK" and do nothing.
|
---|
1788 |
|
---|
1789 | // _codec.Message = z_errmsg[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_BUF_ERROR)];
|
---|
1790 | // throw new ZlibException("AvailableBytesIn == 0 && flush<=old_flush && flush != FlushType.Finish");
|
---|
1791 |
|
---|
1792 | return ZlibConstants.Z_OK;
|
---|
1793 | }
|
---|
1794 |
|
---|
1795 | // User must not provide more input after the first FINISH:
|
---|
1796 | if (status == FINISH_STATE && _codec.AvailableBytesIn != 0)
|
---|
1797 | {
|
---|
1798 | _codec.Message = _ErrorMessage[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_BUF_ERROR)];
|
---|
1799 | throw new ZlibException("status == FINISH_STATE && _codec.AvailableBytesIn != 0");
|
---|
1800 | }
|
---|
1801 |
|
---|
1802 | // Start a new block or continue the current one.
|
---|
1803 | if (_codec.AvailableBytesIn != 0 || lookahead != 0 || (flush != FlushType.None && status != FINISH_STATE))
|
---|
1804 | {
|
---|
1805 | BlockState bstate = DeflateFunction(flush);
|
---|
1806 |
|
---|
1807 | if (bstate == BlockState.FinishStarted || bstate == BlockState.FinishDone)
|
---|
1808 | {
|
---|
1809 | status = FINISH_STATE;
|
---|
1810 | }
|
---|
1811 | if (bstate == BlockState.NeedMore || bstate == BlockState.FinishStarted)
|
---|
1812 | {
|
---|
1813 | if (_codec.AvailableBytesOut == 0)
|
---|
1814 | {
|
---|
1815 | last_flush = -1; // avoid BUF_ERROR next call, see above
|
---|
1816 | }
|
---|
1817 | return ZlibConstants.Z_OK;
|
---|
1818 | // If flush != Z_NO_FLUSH && avail_out == 0, the next call
|
---|
1819 | // of deflate should use the same flush parameter to make sure
|
---|
1820 | // that the flush is complete. So we don't have to output an
|
---|
1821 | // empty block here, this will be done at next call. This also
|
---|
1822 | // ensures that for a very small output buffer, we emit at most
|
---|
1823 | // one empty block.
|
---|
1824 | }
|
---|
1825 |
|
---|
1826 | if (bstate == BlockState.BlockDone)
|
---|
1827 | {
|
---|
1828 | if (flush == FlushType.Partial)
|
---|
1829 | {
|
---|
1830 | _tr_align();
|
---|
1831 | }
|
---|
1832 | else
|
---|
1833 | {
|
---|
1834 | // FlushType.Full or FlushType.Sync
|
---|
1835 | _tr_stored_block(0, 0, false);
|
---|
1836 | // For a full flush, this empty block will be recognized
|
---|
1837 | // as a special marker by inflate_sync().
|
---|
1838 | if (flush == FlushType.Full)
|
---|
1839 | {
|
---|
1840 | // clear hash (forget the history)
|
---|
1841 | for (int i = 0; i < hash_size; i++)
|
---|
1842 | head[i] = 0;
|
---|
1843 | }
|
---|
1844 | }
|
---|
1845 | _codec.flush_pending();
|
---|
1846 | if (_codec.AvailableBytesOut == 0)
|
---|
1847 | {
|
---|
1848 | last_flush = -1; // avoid BUF_ERROR at next call, see above
|
---|
1849 | return ZlibConstants.Z_OK;
|
---|
1850 | }
|
---|
1851 | }
|
---|
1852 | }
|
---|
1853 |
|
---|
1854 | if (flush != FlushType.Finish)
|
---|
1855 | return ZlibConstants.Z_OK;
|
---|
1856 |
|
---|
1857 | if (!WantRfc1950HeaderBytes || Rfc1950BytesEmitted)
|
---|
1858 | return ZlibConstants.Z_STREAM_END;
|
---|
1859 |
|
---|
1860 | // Write the zlib trailer (adler32)
|
---|
1861 | pending[pendingCount++] = (byte)((_codec._Adler32 & 0xFF000000) >> 24);
|
---|
1862 | pending[pendingCount++] = (byte)((_codec._Adler32 & 0x00FF0000) >> 16);
|
---|
1863 | pending[pendingCount++] = (byte)((_codec._Adler32 & 0x0000FF00) >> 8);
|
---|
1864 | pending[pendingCount++] = (byte)(_codec._Adler32 & 0x000000FF);
|
---|
1865 | //putShortMSB((int)(SharedUtils.URShift(_codec._Adler32, 16)));
|
---|
1866 | //putShortMSB((int)(_codec._Adler32 & 0xffff));
|
---|
1867 |
|
---|
1868 | _codec.flush_pending();
|
---|
1869 |
|
---|
1870 | // If avail_out is zero, the application will call deflate again
|
---|
1871 | // to flush the rest.
|
---|
1872 |
|
---|
1873 | Rfc1950BytesEmitted = true; // write the trailer only once!
|
---|
1874 |
|
---|
1875 | return pendingCount != 0 ? ZlibConstants.Z_OK : ZlibConstants.Z_STREAM_END;
|
---|
1876 | }
|
---|
1877 |
|
---|
1878 | }
|
---|
1879 | } |
---|