[3117] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[3117] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[11929] | 22 | using System;
|
---|
[4722] | 23 | using HeuristicLab.Common;
|
---|
[3117] | 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
[17097] | 28 | using HEAL.Attic;
|
---|
[3117] | 29 |
|
---|
| 30 | namespace HeuristicLab.Encodings.BinaryVectorEncoding {
|
---|
| 31 | [Item("StochasticOneBitflipMultiMoveGenerator", "Randomly samples n from all possible one bitflip moves from a given BinaryVector.")]
|
---|
[17097] | 32 | [StorableType("11A9E43A-6291-4F9D-90AB-DC205923EE68")]
|
---|
[11929] | 33 | public class StochasticOneBitflipMultiMoveGenerator : OneBitflipMoveGenerator, IStochasticOperator, IMultiMoveGenerator {
|
---|
[3520] | 34 | public ILookupParameter<IRandom> RandomParameter {
|
---|
| 35 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
| 36 | }
|
---|
[3117] | 37 | public IValueLookupParameter<IntValue> SampleSizeParameter {
|
---|
| 38 | get { return (IValueLookupParameter<IntValue>)Parameters["SampleSize"]; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | public IntValue SampleSize {
|
---|
| 42 | get { return SampleSizeParameter.Value; }
|
---|
| 43 | set { SampleSizeParameter.Value = value; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
[4722] | 46 | [StorableConstructor]
|
---|
[17097] | 47 | protected StochasticOneBitflipMultiMoveGenerator(StorableConstructorFlag _) : base(_) { }
|
---|
[4722] | 48 | protected StochasticOneBitflipMultiMoveGenerator(StochasticOneBitflipMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { }
|
---|
[3117] | 49 | public StochasticOneBitflipMultiMoveGenerator()
|
---|
| 50 | : base() {
|
---|
[3520] | 51 | Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator."));
|
---|
[3117] | 52 | Parameters.Add(new ValueLookupParameter<IntValue>("SampleSize", "The number of moves to generate."));
|
---|
| 53 | }
|
---|
| 54 |
|
---|
[4722] | 55 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 56 | return new StochasticOneBitflipMultiMoveGenerator(this, cloner);
|
---|
| 57 | }
|
---|
| 58 |
|
---|
[3117] | 59 | public static OneBitflipMove[] Apply(BinaryVector binaryVector, IRandom random, int sampleSize) {
|
---|
| 60 | OneBitflipMove[] moves = new OneBitflipMove[sampleSize];
|
---|
| 61 | for (int i = 0; i < sampleSize; i++) {
|
---|
[3520] | 62 | moves[i] = StochasticOneBitflipSingleMoveGenerator.Apply(binaryVector, random);
|
---|
[3117] | 63 | }
|
---|
| 64 | return moves;
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | protected override OneBitflipMove[] GenerateMoves(BinaryVector binaryVector) {
|
---|
| 68 | IRandom random = RandomParameter.ActualValue;
|
---|
[11929] | 69 | if (SampleSizeParameter.ActualValue == null) throw new InvalidOperationException("StochasticOneBitflipMultiMoveGenerator: Parameter " + SampleSizeParameter.ActualName + " could not be found.");
|
---|
[3117] | 70 | return Apply(binaryVector, random, SampleSizeParameter.ActualValue.Value);
|
---|
| 71 | }
|
---|
| 72 | }
|
---|
| 73 | }
|
---|