1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Diagnostics.Contracts;
|
---|
25 | using System.Linq;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Common {
|
---|
28 | public static class EnumerableStatisticExtensions {
|
---|
29 | /// <summary>
|
---|
30 | /// Calculates the median element of the enumeration.
|
---|
31 | /// </summary>
|
---|
32 | /// <param name="values"></param>
|
---|
33 | /// <returns></returns>
|
---|
34 | public static double Median(this IEnumerable<double> values) {
|
---|
35 | // See unit tests for comparison with naive implementation
|
---|
36 | return Quantile(values, 0.5);
|
---|
37 | }
|
---|
38 |
|
---|
39 | /// <summary>
|
---|
40 | /// Calculates the alpha-quantile element of the enumeration.
|
---|
41 | /// </summary>
|
---|
42 | /// <param name="values"></param>
|
---|
43 | /// <returns></returns>
|
---|
44 | public static double Quantile(this IEnumerable<double> values, double alpha) {
|
---|
45 | // See unit tests for comparison with naive implementation
|
---|
46 | double[] valuesArr = values.ToArray();
|
---|
47 | int n = valuesArr.Length;
|
---|
48 | if (n == 0) throw new InvalidOperationException("Enumeration contains no elements.");
|
---|
49 |
|
---|
50 | // "When N is even, statistics books define the median as the arithmetic mean of the elements k = N/2
|
---|
51 | // and k = N/2 + 1 (that is, N/2 from the bottom and N/2 from the top).
|
---|
52 | // If you accept such pedantry, you must perform two separate selections to find these elements."
|
---|
53 |
|
---|
54 | // return the element at Math.Ceiling (if n*alpha is fractional) or the average of two elements if n*alpha is integer.
|
---|
55 | var pos = n * alpha;
|
---|
56 | Contract.Assert(pos >= 0);
|
---|
57 | Contract.Assert(pos < n);
|
---|
58 | bool isInteger = Math.Round(pos).IsAlmost(pos);
|
---|
59 | if (isInteger) {
|
---|
60 | return 0.5 * (Select((int)pos - 1, valuesArr) + Select((int)pos, valuesArr));
|
---|
61 | } else {
|
---|
62 | return Select((int)Math.Ceiling(pos) - 1, valuesArr);
|
---|
63 | }
|
---|
64 | }
|
---|
65 |
|
---|
66 | // Numerical Recipes in C++, §8.5 Selecting the Mth Largest, O(n)
|
---|
67 | // Given k in [0..n-1] returns an array value from array arr[0..n-1] such that k array values are
|
---|
68 | // less than or equal to the one returned. The input array will be rearranged to have this value in
|
---|
69 | // location arr[k], with all smaller elements moved to arr[0..k-1] (in arbitrary order) and all
|
---|
70 | // larger elements in arr[k+1..n-1] (also in arbitrary order).
|
---|
71 | //
|
---|
72 | // Could be changed to Select<T> where T is IComparable but in this case is significantly slower for double values
|
---|
73 | private static double Select(int k, double[] arr) {
|
---|
74 | Contract.Assert(arr.GetLowerBound(0) == 0);
|
---|
75 | Contract.Assert(k >= 0 && k < arr.Length);
|
---|
76 | int i, ir, j, l, mid, n = arr.Length;
|
---|
77 | double a;
|
---|
78 | l = 0;
|
---|
79 | ir = n - 1;
|
---|
80 | for (; ; ) {
|
---|
81 | if (ir <= l + 1) {
|
---|
82 | // Active partition contains 1 or 2 elements.
|
---|
83 | if (ir == l + 1 && arr[ir] < arr[l]) {
|
---|
84 | // if (ir == l + 1 && arr[ir].CompareTo(arr[l]) < 0) {
|
---|
85 | // Case of 2 elements.
|
---|
86 | // SWAP(arr[l], arr[ir]);
|
---|
87 | double temp = arr[l];
|
---|
88 | arr[l] = arr[ir];
|
---|
89 | arr[ir] = temp;
|
---|
90 | }
|
---|
91 | return arr[k];
|
---|
92 | } else {
|
---|
93 | mid = (l + ir) >> 1; // Choose median of left, center, and right elements
|
---|
94 | {
|
---|
95 | // SWAP(arr[mid], arr[l + 1]); // as partitioning element a. Also
|
---|
96 | double temp = arr[mid];
|
---|
97 | arr[mid] = arr[l + 1];
|
---|
98 | arr[l + 1] = temp;
|
---|
99 | }
|
---|
100 |
|
---|
101 | if (arr[l] > arr[ir]) {
|
---|
102 | // if (arr[l].CompareTo(arr[ir]) > 0) { // rearrange so that arr[l] arr[ir] <= arr[l+1],
|
---|
103 | // SWAP(arr[l], arr[ir]); . arr[ir] >= arr[l+1]
|
---|
104 | double temp = arr[l];
|
---|
105 | arr[l] = arr[ir];
|
---|
106 | arr[ir] = temp;
|
---|
107 | }
|
---|
108 |
|
---|
109 | if (arr[l + 1] > arr[ir]) {
|
---|
110 | // if (arr[l + 1].CompareTo(arr[ir]) > 0) {
|
---|
111 | // SWAP(arr[l + 1], arr[ir]);
|
---|
112 | double temp = arr[l + 1];
|
---|
113 | arr[l + 1] = arr[ir];
|
---|
114 | arr[ir] = temp;
|
---|
115 | }
|
---|
116 | if (arr[l] > arr[l + 1]) {
|
---|
117 | //if (arr[l].CompareTo(arr[l + 1]) > 0) {
|
---|
118 | // SWAP(arr[l], arr[l + 1]);
|
---|
119 | double temp = arr[l];
|
---|
120 | arr[l] = arr[l + 1];
|
---|
121 | arr[l + 1] = temp;
|
---|
122 |
|
---|
123 | }
|
---|
124 | i = l + 1; // Initialize pointers for partitioning.
|
---|
125 | j = ir;
|
---|
126 | a = arr[l + 1]; // Partitioning element.
|
---|
127 | for (; ; ) { // Beginning of innermost loop.
|
---|
128 | do i++; while (arr[i] < a /* arr[i].CompareTo(a) < 0 */); // Scan up to find element > a.
|
---|
129 | do j--; while (arr[j] > a /* arr[j].CompareTo(a) > 0 */); // Scan down to find element < a.
|
---|
130 | if (j < i) break; // Pointers crossed. Partitioning complete.
|
---|
131 | {
|
---|
132 | // SWAP(arr[i], arr[j]);
|
---|
133 | double temp = arr[i];
|
---|
134 | arr[i] = arr[j];
|
---|
135 | arr[j] = temp;
|
---|
136 | }
|
---|
137 | } // End of innermost loop.
|
---|
138 | arr[l + 1] = arr[j]; // Insert partitioning element.
|
---|
139 | arr[j] = a;
|
---|
140 | if (j >= k) ir = j - 1; // Keep active the partition that contains the
|
---|
141 | if (j <= k) l = i; // kth element.
|
---|
142 | }
|
---|
143 | }
|
---|
144 | }
|
---|
145 |
|
---|
146 | /// <summary>
|
---|
147 | /// Calculates the range (max - min) of the enumeration.
|
---|
148 | /// </summary>
|
---|
149 | /// <param name="values"></param>
|
---|
150 | /// <returns></returns>
|
---|
151 | public static double Range(this IEnumerable<double> values) {
|
---|
152 | double min = double.PositiveInfinity;
|
---|
153 | double max = double.NegativeInfinity;
|
---|
154 | int i = 0;
|
---|
155 | foreach (var e in values) {
|
---|
156 | if (min > e) min = e;
|
---|
157 | if (max < e) max = e;
|
---|
158 | i++;
|
---|
159 | }
|
---|
160 | if (i < 1) throw new ArgumentException("The enumerable must contain at least two elements", "values");
|
---|
161 | return max - min;
|
---|
162 | }
|
---|
163 |
|
---|
164 |
|
---|
165 | /// <summary>
|
---|
166 | /// Calculates the sample standard deviation of values.
|
---|
167 | /// </summary>
|
---|
168 | /// <param name="values"></param>
|
---|
169 | /// <returns></returns>
|
---|
170 | public static double StandardDeviation(this IEnumerable<double> values) {
|
---|
171 | return Math.Sqrt(Variance(values));
|
---|
172 | }
|
---|
173 |
|
---|
174 | /// <summary>
|
---|
175 | /// Calculates the population standard deviation of values.
|
---|
176 | /// </summary>
|
---|
177 | /// <param name="values"></param>
|
---|
178 | /// <returns></returns>
|
---|
179 | public static double StandardDeviationPop(this IEnumerable<double> values) {
|
---|
180 | return Math.Sqrt(VariancePop(values));
|
---|
181 | }
|
---|
182 |
|
---|
183 | /// <summary>
|
---|
184 | /// Calculates the sample variance of values. (sum (x - x_mean)² / (n-1))
|
---|
185 | /// </summary>
|
---|
186 | /// <param name="values"></param>
|
---|
187 | /// <returns></returns>
|
---|
188 | public static double Variance(this IEnumerable<double> values) {
|
---|
189 | return Variance(values, true);
|
---|
190 | }
|
---|
191 |
|
---|
192 | /// <summary>
|
---|
193 | /// Calculates the population variance of values. (sum (x - x_mean)² / n)
|
---|
194 | /// </summary>
|
---|
195 | /// <param name="values"></param>
|
---|
196 | /// <returns></returns>
|
---|
197 | public static double VariancePop(this IEnumerable<double> values) {
|
---|
198 | return Variance(values, false);
|
---|
199 | }
|
---|
200 |
|
---|
201 | private static double Variance(IEnumerable<double> values, bool sampleVariance) {
|
---|
202 | int m_n = 0;
|
---|
203 | double m_oldM = 0.0;
|
---|
204 | double m_newM = 0.0;
|
---|
205 | double m_oldS = 0.0;
|
---|
206 | double m_newS = 0.0;
|
---|
207 | foreach (double x in values) {
|
---|
208 | m_n++;
|
---|
209 | if (m_n == 1) {
|
---|
210 | m_oldM = m_newM = x;
|
---|
211 | m_oldS = 0.0;
|
---|
212 | } else {
|
---|
213 | m_newM = m_oldM + (x - m_oldM) / m_n;
|
---|
214 | m_newS = m_oldS + (x - m_oldM) * (x - m_newM);
|
---|
215 |
|
---|
216 | // set up for next iteration
|
---|
217 | m_oldM = m_newM;
|
---|
218 | m_oldS = m_newS;
|
---|
219 | }
|
---|
220 | }
|
---|
221 |
|
---|
222 | if (m_n == 0) return double.NaN;
|
---|
223 | if (m_n == 1) return 0.0;
|
---|
224 |
|
---|
225 | if (sampleVariance) return m_newS / (m_n - 1);
|
---|
226 | else return m_newS / m_n;
|
---|
227 | }
|
---|
228 |
|
---|
229 | public static IEnumerable<double> LimitToRange(this IEnumerable<double> values, double min, double max) {
|
---|
230 | if (min > max) throw new ArgumentException(string.Format("Minimum {0} is larger than maximum {1}.", min, max));
|
---|
231 | foreach (var x in values) {
|
---|
232 | if (double.IsNaN(x)) yield return (max + min) / 2.0;
|
---|
233 | else if (x < min) yield return min;
|
---|
234 | else if (x > max) yield return max;
|
---|
235 | else yield return x;
|
---|
236 | }
|
---|
237 | }
|
---|
238 | }
|
---|
239 | }
|
---|