1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Common {
|
---|
27 | public class EmpiricalCumulativeDistributionFunction {
|
---|
28 | private static readonly AbscissaComparer abscissaComparer = new AbscissaComparer();
|
---|
29 | private static readonly OrdinateComparer ordinateComparer = new OrdinateComparer();
|
---|
30 |
|
---|
31 | private List<Point2D<double>> ecdf;
|
---|
32 | public IEnumerable<Point2D<double>> SupportingPoints {
|
---|
33 | get { return ecdf; }
|
---|
34 | }
|
---|
35 |
|
---|
36 | public EmpiricalCumulativeDistributionFunction(IList<double> sample) {
|
---|
37 | ecdf = new List<Point2D<double>>();
|
---|
38 |
|
---|
39 | var len = sample.Count;
|
---|
40 | var cumulative = 0;
|
---|
41 | var localcumulative = 0;
|
---|
42 | var prev = double.NaN;
|
---|
43 | foreach (var p in sample.OrderBy(x => x)) {
|
---|
44 | if (double.IsNaN(p) || double.IsInfinity(p)) continue;
|
---|
45 | if (!double.IsNaN(prev) && prev < p) {
|
---|
46 | cumulative += localcumulative;
|
---|
47 | localcumulative = 0;
|
---|
48 | ecdf.Add(Point2D<double>.Create(prev, cumulative / (double)len));
|
---|
49 | }
|
---|
50 | prev = p;
|
---|
51 | localcumulative++;
|
---|
52 | }
|
---|
53 | if (!double.IsNaN(prev)) {
|
---|
54 | cumulative += localcumulative;
|
---|
55 | ecdf.Add(Point2D<double>.Create(prev, cumulative / (double)len));
|
---|
56 | }
|
---|
57 | }
|
---|
58 | public EmpiricalCumulativeDistributionFunction(IEnumerable<Point2D<double>> ecdf) {
|
---|
59 | this.ecdf = new List<Point2D<double>>();
|
---|
60 | var prev = Point2D<double>.Empty;
|
---|
61 | foreach (var point in ecdf) {
|
---|
62 | if (point.Y < 0 || point.Y > 1 || double.IsNaN(point.X) || double.IsInfinity(point.X)
|
---|
63 | || point.IsEmpty || (!prev.IsEmpty && (point.X <= prev.X || point.Y <= prev.Y)))
|
---|
64 | throw new ArgumentException("Invalid supporting points of a cumulative distribution function. Must be strictly monotonically increasing in both X and Y with X in R and Y in [0;1].", "ecdf");
|
---|
65 |
|
---|
66 | this.ecdf.Add(point);
|
---|
67 | prev = point;
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public double Evaluate(double x) {
|
---|
72 | if (ecdf.Count == 0) return double.NaN;
|
---|
73 | if (x < ecdf[0].X) return 0;
|
---|
74 | var last = ecdf[ecdf.Count - 1];
|
---|
75 | if (x >= last.X) return last.Y;
|
---|
76 |
|
---|
77 | var index = ecdf.BinarySearch(Point2D<double>.Create(x, 0), abscissaComparer);
|
---|
78 | if (index >= 0) return ecdf[index].Y;
|
---|
79 | return ecdf[~index - 1].Y;
|
---|
80 | }
|
---|
81 |
|
---|
82 | public double InterpolateLinear(double x) {
|
---|
83 | if (ecdf.Count == 0) return double.NaN;
|
---|
84 | if (x < ecdf[0].X) return 0;
|
---|
85 | var last = ecdf[ecdf.Count - 1];
|
---|
86 | if (x >= last.X) return last.Y;
|
---|
87 |
|
---|
88 | var index = ecdf.BinarySearch(Point2D<double>.Create(x, 0), abscissaComparer);
|
---|
89 | if (index >= 0) return ecdf[index].Y;
|
---|
90 | var prev = ecdf[~index - 1];
|
---|
91 | var next = ecdf[~index];
|
---|
92 | return prev.Y + (next.Y - prev.Y) * ((x - prev.X) / (next.X - prev.X));
|
---|
93 | }
|
---|
94 |
|
---|
95 | public double InterpolateNearest(double x) {
|
---|
96 | if (ecdf.Count == 0) return double.NaN;
|
---|
97 | if (x < ecdf[0].X) return 0;
|
---|
98 | var last = ecdf[ecdf.Count - 1];
|
---|
99 | if (x >= last.X) return last.Y;
|
---|
100 |
|
---|
101 | var index = ecdf.BinarySearch(Point2D<double>.Create(x, 0), abscissaComparer);
|
---|
102 | if (index >= 0) return ecdf[index].Y;
|
---|
103 | var prev = ecdf[~index - 1];
|
---|
104 | var next = ecdf[~index];
|
---|
105 | if (x - prev.X < next.X - x) return prev.Y;
|
---|
106 | return next.Y;
|
---|
107 | }
|
---|
108 |
|
---|
109 | public double Inverse(double y) {
|
---|
110 | if (ecdf.Count == 0) return double.NaN;
|
---|
111 | if (y < 0 || y > 1) throw new ArgumentException("parameter must be in interval [0;1]", "y");
|
---|
112 | if (ecdf[ecdf.Count - 1].Y < y) return double.PositiveInfinity;
|
---|
113 | var index = ecdf.BinarySearch(Point2D<double>.Create(0, y), ordinateComparer);
|
---|
114 | if (index >= 0) return ecdf[index].X;
|
---|
115 | return ecdf[Math.Max(~index - 1, 0)].X;
|
---|
116 | }
|
---|
117 |
|
---|
118 | private class AbscissaComparer : Comparer<Point2D<double>> {
|
---|
119 | public override int Compare(Point2D<double> x, Point2D<double> y) {
|
---|
120 | return x.X.CompareTo(y.X);
|
---|
121 | }
|
---|
122 | }
|
---|
123 |
|
---|
124 | private class OrdinateComparer : Comparer<Point2D<double>> {
|
---|
125 | public override int Compare(Point2D<double> x, Point2D<double> y) {
|
---|
126 | return x.Y.CompareTo(y.Y);
|
---|
127 | }
|
---|
128 | }
|
---|
129 | }
|
---|
130 | }
|
---|