[11663] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17181] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[11838] | 4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
[11663] | 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
[12005] | 25 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
| 26 | using HeuristicLab.Problems.Binary;
|
---|
[11663] | 27 | using HeuristicLab.Random;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
|
---|
[11838] | 30 | // This code is based off the publication
|
---|
| 31 | // B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014
|
---|
| 32 | // and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid
|
---|
[11663] | 33 | public static class LinkageCrossover {
|
---|
[11672] | 34 | // In the GECCO paper, Figure 3
|
---|
[12005] | 35 | public static double ImproveUsingTree(LinkageTree tree, IList<BinaryVector> donors, BinaryVector solution, double fitness, BinaryProblem problem, IRandom rand) {
|
---|
[11663] | 36 | var options = Enumerable.Range(0, donors.Count).ToArray();
|
---|
| 37 | foreach (var cluster in tree.Clusters) {
|
---|
| 38 | // Find a donor which has at least one gene value different
|
---|
| 39 | // from the current solution for this cluster of genes
|
---|
| 40 | bool donorFound = false;
|
---|
[11666] | 41 | foreach (var donorIndex in options.ShuffleList(rand)) {
|
---|
[11663] | 42 | // Attempt the donation
|
---|
[12005] | 43 | fitness = Donate(solution, fitness, donors[donorIndex], cluster, problem, rand, out donorFound);
|
---|
[11663] | 44 | if (donorFound) break;
|
---|
| 45 | }
|
---|
| 46 | }
|
---|
| 47 | return fitness;
|
---|
| 48 | }
|
---|
| 49 |
|
---|
[12005] | 50 | private static double Donate(BinaryVector solution, double fitness, BinaryVector source, IEnumerable<int> cluster, BinaryProblem problem, IRandom rand, out bool changed) {
|
---|
[11663] | 51 | // keep track of which bits flipped to make the donation
|
---|
| 52 | List<int> flipped = new List<int>();
|
---|
| 53 | foreach (var index in cluster) {
|
---|
| 54 | if (solution[index] != source[index]) {
|
---|
| 55 | flipped.Add(index);
|
---|
| 56 | solution[index] = !solution[index];
|
---|
| 57 | }
|
---|
| 58 | }
|
---|
| 59 | changed = flipped.Count > 0;
|
---|
| 60 | if (changed) {
|
---|
[12005] | 61 | double newFitness = problem.Evaluate(solution, rand);
|
---|
[11667] | 62 | // if the original is strictly better, revert the change
|
---|
| 63 | if (problem.IsBetter(fitness, newFitness)) {
|
---|
[11663] | 64 | foreach (var index in flipped) {
|
---|
| 65 | solution[index] = !solution[index];
|
---|
| 66 | }
|
---|
[11667] | 67 | } else {
|
---|
| 68 | // new solution is no worse than original, keep change to solution
|
---|
| 69 | fitness = newFitness;
|
---|
[11663] | 70 | }
|
---|
| 71 | }
|
---|
| 72 | return fitness;
|
---|
| 73 | }
|
---|
| 74 | }
|
---|
| 75 | }
|
---|