[14414] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15584] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[14414] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 |
|
---|
| 21 | //Code is based on an implementation from Laurens van der Maaten
|
---|
| 22 |
|
---|
| 23 | /*
|
---|
| 24 | *
|
---|
| 25 | * Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
|
---|
| 26 | * All rights reserved.
|
---|
| 27 | *
|
---|
| 28 | * Redistribution and use in source and binary forms, with or without
|
---|
| 29 | * modification, are permitted provided that the following conditions are met:
|
---|
| 30 | * 1. Redistributions of source code must retain the above copyright
|
---|
| 31 | * notice, this list of conditions and the following disclaimer.
|
---|
| 32 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
| 33 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 34 | * documentation and/or other materials provided with the distribution.
|
---|
| 35 | * 3. All advertising materials mentioning features or use of this software
|
---|
| 36 | * must display the following acknowledgement:
|
---|
| 37 | * This product includes software developed by the Delft University of Technology.
|
---|
| 38 | * 4. Neither the name of the Delft University of Technology nor the names of
|
---|
| 39 | * its contributors may be used to endorse or promote products derived from
|
---|
| 40 | * this software without specific prior written permission.
|
---|
| 41 | *
|
---|
| 42 | * THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
|
---|
| 43 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 44 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
---|
| 45 | * EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
| 46 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
---|
| 47 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
---|
| 48 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
---|
| 49 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
---|
| 50 | * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
---|
| 51 | * OF SUCH DAMAGE.
|
---|
| 52 | *
|
---|
| 53 | */
|
---|
| 54 | #endregion
|
---|
| 55 |
|
---|
| 56 | using System;
|
---|
| 57 | using System.Collections.Generic;
|
---|
[14785] | 58 | using HeuristicLab.Collections;
|
---|
[14414] | 59 | using HeuristicLab.Common;
|
---|
| 60 | using HeuristicLab.Core;
|
---|
| 61 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 62 | using HeuristicLab.Random;
|
---|
| 63 |
|
---|
| 64 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 65 | [StorableClass]
|
---|
[14807] | 66 | public class TSNEStatic<T> {
|
---|
[14788] | 67 | [StorableClass]
|
---|
| 68 | public sealed class TSNEState : DeepCloneable {
|
---|
[15249] | 69 | #region Storables
|
---|
[14788] | 70 | // initialized once
|
---|
[14806] | 71 | [Storable]
|
---|
[14788] | 72 | public IDistance<T> distance;
|
---|
[14806] | 73 | [Storable]
|
---|
[14788] | 74 | public IRandom random;
|
---|
[14806] | 75 | [Storable]
|
---|
[14788] | 76 | public double perplexity;
|
---|
[14806] | 77 | [Storable]
|
---|
[14788] | 78 | public bool exact;
|
---|
[14806] | 79 | [Storable]
|
---|
[14788] | 80 | public int noDatapoints;
|
---|
[14806] | 81 | [Storable]
|
---|
[14788] | 82 | public double finalMomentum;
|
---|
[14806] | 83 | [Storable]
|
---|
[14788] | 84 | public int momSwitchIter;
|
---|
[14806] | 85 | [Storable]
|
---|
[14788] | 86 | public int stopLyingIter;
|
---|
[14806] | 87 | [Storable]
|
---|
[14788] | 88 | public double theta;
|
---|
[14806] | 89 | [Storable]
|
---|
[14788] | 90 | public double eta;
|
---|
[14806] | 91 | [Storable]
|
---|
[14788] | 92 | public int newDimensions;
|
---|
[14414] | 93 |
|
---|
[14788] | 94 | // for approximate version: sparse representation of similarity/distance matrix
|
---|
[14806] | 95 | [Storable]
|
---|
[14788] | 96 | public double[] valP; // similarity/distance
|
---|
[14806] | 97 | [Storable]
|
---|
[14788] | 98 | public int[] rowP; // row index
|
---|
[14806] | 99 | [Storable]
|
---|
[14788] | 100 | public int[] colP; // col index
|
---|
[14414] | 101 |
|
---|
[14788] | 102 | // for exact version: dense representation of distance/similarity matrix
|
---|
[14806] | 103 | [Storable]
|
---|
[14788] | 104 | public double[,] p;
|
---|
[14512] | 105 |
|
---|
[14788] | 106 | // mapped data
|
---|
[14806] | 107 | [Storable]
|
---|
[14788] | 108 | public double[,] newData;
|
---|
[14414] | 109 |
|
---|
[14806] | 110 | [Storable]
|
---|
[14788] | 111 | public int iter;
|
---|
[14806] | 112 | [Storable]
|
---|
[14788] | 113 | public double currentMomentum;
|
---|
[14414] | 114 |
|
---|
[14788] | 115 | // helper variables (updated in each iteration)
|
---|
[14806] | 116 | [Storable]
|
---|
[14788] | 117 | public double[,] gains;
|
---|
[14806] | 118 | [Storable]
|
---|
[14788] | 119 | public double[,] uY;
|
---|
[14806] | 120 | [Storable]
|
---|
[14788] | 121 | public double[,] dY;
|
---|
[15249] | 122 | #endregion
|
---|
[14512] | 123 |
|
---|
[15249] | 124 | #region Constructors & Cloning
|
---|
[14788] | 125 | private TSNEState(TSNEState original, Cloner cloner) : base(original, cloner) {
|
---|
[15249] | 126 | distance = cloner.Clone(original.distance);
|
---|
| 127 | random = cloner.Clone(original.random);
|
---|
| 128 | perplexity = original.perplexity;
|
---|
| 129 | exact = original.exact;
|
---|
| 130 | noDatapoints = original.noDatapoints;
|
---|
| 131 | finalMomentum = original.finalMomentum;
|
---|
| 132 | momSwitchIter = original.momSwitchIter;
|
---|
| 133 | stopLyingIter = original.stopLyingIter;
|
---|
| 134 | theta = original.theta;
|
---|
| 135 | eta = original.eta;
|
---|
| 136 | newDimensions = original.newDimensions;
|
---|
| 137 | if (original.valP != null) {
|
---|
| 138 | valP = new double[original.valP.Length];
|
---|
| 139 | Array.Copy(original.valP, valP, valP.Length);
|
---|
[14806] | 140 | }
|
---|
[15249] | 141 | if (original.rowP != null) {
|
---|
| 142 | rowP = new int[original.rowP.Length];
|
---|
| 143 | Array.Copy(original.rowP, rowP, rowP.Length);
|
---|
[14806] | 144 | }
|
---|
[15249] | 145 | if (original.colP != null) {
|
---|
| 146 | colP = new int[original.colP.Length];
|
---|
| 147 | Array.Copy(original.colP, colP, colP.Length);
|
---|
[14806] | 148 | }
|
---|
[15249] | 149 | if (original.p != null) {
|
---|
| 150 | p = new double[original.p.GetLength(0), original.p.GetLength(1)];
|
---|
| 151 | Array.Copy(original.p, p, p.Length);
|
---|
[14806] | 152 | }
|
---|
[15249] | 153 | newData = new double[original.newData.GetLength(0), original.newData.GetLength(1)];
|
---|
| 154 | Array.Copy(original.newData, newData, newData.Length);
|
---|
| 155 | iter = original.iter;
|
---|
| 156 | currentMomentum = original.currentMomentum;
|
---|
| 157 | gains = new double[original.gains.GetLength(0), original.gains.GetLength(1)];
|
---|
| 158 | Array.Copy(original.gains, gains, gains.Length);
|
---|
| 159 | uY = new double[original.uY.GetLength(0), original.uY.GetLength(1)];
|
---|
| 160 | Array.Copy(original.uY, uY, uY.Length);
|
---|
| 161 | dY = new double[original.dY.GetLength(0), original.dY.GetLength(1)];
|
---|
| 162 | Array.Copy(original.dY, dY, dY.Length);
|
---|
[14788] | 163 | }
|
---|
[14806] | 164 |
|
---|
[14788] | 165 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 166 | return new TSNEState(this, cloner);
|
---|
| 167 | }
|
---|
[14414] | 168 |
|
---|
[14807] | 169 | [StorableConstructor]
|
---|
[14837] | 170 | public TSNEState(bool deserializing) { }
|
---|
[15571] | 171 |
|
---|
| 172 | public TSNEState(IReadOnlyList<T> data, IDistance<T> distance, IRandom random, int newDimensions, double perplexity,
|
---|
| 173 | double theta, int stopLyingIter, int momSwitchIter, double momentum, double finalMomentum, double eta, bool randomInit) {
|
---|
[14788] | 174 | this.distance = distance;
|
---|
| 175 | this.random = random;
|
---|
| 176 | this.newDimensions = newDimensions;
|
---|
| 177 | this.perplexity = perplexity;
|
---|
| 178 | this.theta = theta;
|
---|
| 179 | this.stopLyingIter = stopLyingIter;
|
---|
| 180 | this.momSwitchIter = momSwitchIter;
|
---|
[15249] | 181 | currentMomentum = momentum;
|
---|
[14788] | 182 | this.finalMomentum = finalMomentum;
|
---|
| 183 | this.eta = eta;
|
---|
[14414] | 184 |
|
---|
[14788] | 185 | // initialize
|
---|
[15571] | 186 | noDatapoints = data.Count;
|
---|
[15249] | 187 | if (noDatapoints - 1 < 3 * perplexity)
|
---|
[14806] | 188 | throw new ArgumentException("Perplexity too large for the number of data points!");
|
---|
[14788] | 189 |
|
---|
| 190 | exact = Math.Abs(theta) < double.Epsilon;
|
---|
| 191 | newData = new double[noDatapoints, newDimensions];
|
---|
| 192 | dY = new double[noDatapoints, newDimensions];
|
---|
| 193 | uY = new double[noDatapoints, newDimensions];
|
---|
| 194 | gains = new double[noDatapoints, newDimensions];
|
---|
[15249] | 195 | for (var i = 0; i < noDatapoints; i++)
|
---|
[15571] | 196 | for (var j = 0; j < newDimensions; j++)
|
---|
| 197 | gains[i, j] = 1.0;
|
---|
[14788] | 198 |
|
---|
| 199 | p = null;
|
---|
| 200 | rowP = null;
|
---|
| 201 | colP = null;
|
---|
| 202 | valP = null;
|
---|
| 203 |
|
---|
| 204 | //Calculate Similarities
|
---|
[14858] | 205 | if (exact) p = CalculateExactSimilarites(data, distance, perplexity);
|
---|
[14788] | 206 | else CalculateApproximateSimilarities(data, distance, perplexity, out rowP, out colP, out valP);
|
---|
| 207 |
|
---|
[14837] | 208 | // Lie about the P-values (factor is 4 in the MATLAB implementation)
|
---|
[15249] | 209 | if (exact) for (var i = 0; i < noDatapoints; i++) for (var j = 0; j < noDatapoints; j++) p[i, j] *= 12.0;
|
---|
| 210 | else for (var i = 0; i < rowP[noDatapoints]; i++) valP[i] *= 12.0;
|
---|
[14788] | 211 |
|
---|
| 212 | // Initialize solution (randomly)
|
---|
| 213 | var rand = new NormalDistributedRandom(random, 0, 1);
|
---|
[15249] | 214 | for (var i = 0; i < noDatapoints; i++)
|
---|
[15571] | 215 | for (var j = 0; j < newDimensions; j++)
|
---|
| 216 | newData[i, j] = rand.NextDouble() * .0001;
|
---|
| 217 |
|
---|
| 218 | if (!(data[0] is IReadOnlyList<double>) || randomInit) return;
|
---|
| 219 | for (var i = 0; i < noDatapoints; i++)
|
---|
| 220 | for (var j = 0; j < newDimensions; j++) {
|
---|
| 221 | var row = (IReadOnlyList<double>) data[i];
|
---|
| 222 | newData[i, j] = row[j % row.Count];
|
---|
| 223 | }
|
---|
[14414] | 224 | }
|
---|
[15249] | 225 | #endregion
|
---|
[14414] | 226 |
|
---|
[14788] | 227 | public double EvaluateError() {
|
---|
[15571] | 228 | return exact ? EvaluateErrorExact(p, newData, noDatapoints, newDimensions) : EvaluateErrorApproximate(rowP, colP, valP, newData, theta);
|
---|
[14788] | 229 | }
|
---|
[14512] | 230 |
|
---|
[15249] | 231 | #region Helpers
|
---|
[15571] | 232 | private static void CalculateApproximateSimilarities(IReadOnlyList<T> data, IDistance<T> distance, double perplexity, out int[] rowP, out int[] colP, out double[] valP) {
|
---|
[14788] | 233 | // Compute asymmetric pairwise input similarities
|
---|
[15571] | 234 | ComputeGaussianPerplexity(data, distance, out rowP, out colP, out valP, perplexity, (int) (3 * perplexity));
|
---|
[14788] | 235 | // Symmetrize input similarities
|
---|
| 236 | int[] sRowP, symColP;
|
---|
| 237 | double[] sValP;
|
---|
| 238 | SymmetrizeMatrix(rowP, colP, valP, out sRowP, out symColP, out sValP);
|
---|
| 239 | rowP = sRowP;
|
---|
| 240 | colP = symColP;
|
---|
| 241 | valP = sValP;
|
---|
| 242 | var sumP = .0;
|
---|
[15571] | 243 | for (var i = 0; i < rowP[data.Count]; i++) sumP += valP[i];
|
---|
| 244 | for (var i = 0; i < rowP[data.Count]; i++) valP[i] /= sumP;
|
---|
[14788] | 245 | }
|
---|
[15571] | 246 | private static double[,] CalculateExactSimilarites(IReadOnlyList<T> data, IDistance<T> distance, double perplexity) {
|
---|
[14788] | 247 | // Compute similarities
|
---|
[15571] | 248 | var p = new double[data.Count, data.Count];
|
---|
[14788] | 249 | ComputeGaussianPerplexity(data, distance, p, perplexity);
|
---|
| 250 | // Symmetrize input similarities
|
---|
[15571] | 251 | for (var n = 0; n < data.Count; n++) {
|
---|
| 252 | for (var m = n + 1; m < data.Count; m++) {
|
---|
[14788] | 253 | p[n, m] += p[m, n];
|
---|
| 254 | p[m, n] = p[n, m];
|
---|
| 255 | }
|
---|
| 256 | }
|
---|
| 257 | var sumP = .0;
|
---|
[15571] | 258 | for (var i = 0; i < data.Count; i++) {
|
---|
| 259 | for (var j = 0; j < data.Count; j++) {
|
---|
| 260 | sumP += p[i, j];
|
---|
| 261 | }
|
---|
| 262 | }
|
---|
| 263 | for (var i = 0; i < data.Count; i++) {
|
---|
| 264 | for (var j = 0; j < data.Count; j++) {
|
---|
| 265 | p[i, j] /= sumP;
|
---|
| 266 | }
|
---|
| 267 | }
|
---|
[14788] | 268 | return p;
|
---|
| 269 | }
|
---|
| 270 | private static void ComputeGaussianPerplexity(IReadOnlyList<T> x, IDistance<T> distance, out int[] rowP, out int[] colP, out double[] valP, double perplexity, int k) {
|
---|
[15249] | 271 | if (perplexity > k) throw new ArgumentException("Perplexity should be lower than k!");
|
---|
[14512] | 272 |
|
---|
[15249] | 273 | var n = x.Count;
|
---|
[14788] | 274 | // Allocate the memory we need
|
---|
| 275 | rowP = new int[n + 1];
|
---|
| 276 | colP = new int[n * k];
|
---|
| 277 | valP = new double[n * k];
|
---|
| 278 | var curP = new double[n - 1];
|
---|
| 279 | rowP[0] = 0;
|
---|
[15249] | 280 | for (var i = 0; i < n; i++) rowP[i + 1] = rowP[i] + k;
|
---|
[14512] | 281 |
|
---|
[14788] | 282 | var objX = new List<IndexedItem<T>>();
|
---|
[15249] | 283 | for (var i = 0; i < n; i++) objX.Add(new IndexedItem<T>(i, x[i]));
|
---|
[14512] | 284 |
|
---|
[14788] | 285 | // Build ball tree on data set
|
---|
[14837] | 286 | var tree = new VantagePointTree<IndexedItem<T>>(new IndexedItemDistance<T>(distance), objX);
|
---|
[14742] | 287 |
|
---|
[14788] | 288 | // Loop over all points to find nearest neighbors
|
---|
[15249] | 289 | for (var i = 0; i < n; i++) {
|
---|
[14788] | 290 | IList<IndexedItem<T>> indices;
|
---|
| 291 | IList<double> distances;
|
---|
[14742] | 292 |
|
---|
[14788] | 293 | // Find nearest neighbors
|
---|
| 294 | tree.Search(objX[i], k + 1, out indices, out distances);
|
---|
[14512] | 295 |
|
---|
[14788] | 296 | // Initialize some variables for binary search
|
---|
| 297 | var found = false;
|
---|
| 298 | var beta = 1.0;
|
---|
| 299 | var minBeta = double.MinValue;
|
---|
| 300 | var maxBeta = double.MaxValue;
|
---|
[15249] | 301 | const double tol = 1e-5;
|
---|
[14512] | 302 |
|
---|
[14788] | 303 | // Iterate until we found a good perplexity
|
---|
[15571] | 304 | var iter = 0;
|
---|
| 305 | double sumP = 0;
|
---|
[15249] | 306 | while (!found && iter < 200) {
|
---|
[14788] | 307 | // Compute Gaussian kernel row
|
---|
[15249] | 308 | for (var m = 0; m < k; m++) curP[m] = Math.Exp(-beta * distances[m + 1]);
|
---|
[14512] | 309 |
|
---|
[14788] | 310 | // Compute entropy of current row
|
---|
| 311 | sumP = double.Epsilon;
|
---|
[15249] | 312 | for (var m = 0; m < k; m++) sumP += curP[m];
|
---|
[14788] | 313 | var h = .0;
|
---|
[15249] | 314 | for (var m = 0; m < k; m++) h += beta * (distances[m + 1] * curP[m]);
|
---|
[14788] | 315 | h = h / sumP + Math.Log(sumP);
|
---|
| 316 |
|
---|
| 317 | // Evaluate whether the entropy is within the tolerance level
|
---|
| 318 | var hdiff = h - Math.Log(perplexity);
|
---|
[15249] | 319 | if (hdiff < tol && -hdiff < tol) {
|
---|
[14788] | 320 | found = true;
|
---|
[15571] | 321 | }
|
---|
| 322 | else {
|
---|
[15249] | 323 | if (hdiff > 0) {
|
---|
[14788] | 324 | minBeta = beta;
|
---|
[15249] | 325 | if (maxBeta.IsAlmost(double.MaxValue) || maxBeta.IsAlmost(double.MinValue))
|
---|
[14788] | 326 | beta *= 2.0;
|
---|
| 327 | else
|
---|
| 328 | beta = (beta + maxBeta) / 2.0;
|
---|
[15571] | 329 | }
|
---|
| 330 | else {
|
---|
[14788] | 331 | maxBeta = beta;
|
---|
[15249] | 332 | if (minBeta.IsAlmost(double.MinValue) || minBeta.IsAlmost(double.MaxValue))
|
---|
[14788] | 333 | beta /= 2.0;
|
---|
| 334 | else
|
---|
| 335 | beta = (beta + minBeta) / 2.0;
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 |
|
---|
| 339 | // Update iteration counter
|
---|
| 340 | iter++;
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | // Row-normalize current row of P and store in matrix
|
---|
[15249] | 344 | for (var m = 0; m < k; m++) curP[m] /= sumP;
|
---|
| 345 | for (var m = 0; m < k; m++) {
|
---|
[14788] | 346 | colP[rowP[i] + m] = indices[m + 1].Index;
|
---|
| 347 | valP[rowP[i] + m] = curP[m];
|
---|
| 348 | }
|
---|
[14512] | 349 | }
|
---|
| 350 | }
|
---|
[15571] | 351 | private static void ComputeGaussianPerplexity(IReadOnlyList<T> x, IDistance<T> distance, double[,] p, double perplexity) {
|
---|
[14788] | 352 | // Compute the distance matrix
|
---|
| 353 | var dd = ComputeDistances(x, distance);
|
---|
| 354 |
|
---|
[15571] | 355 | var n = x.Count;
|
---|
[14788] | 356 | // Compute the Gaussian kernel row by row
|
---|
[15249] | 357 | for (var i = 0; i < n; i++) {
|
---|
[14788] | 358 | // Initialize some variables
|
---|
| 359 | var found = false;
|
---|
| 360 | var beta = 1.0;
|
---|
[14837] | 361 | var minBeta = double.MinValue;
|
---|
[14788] | 362 | var maxBeta = double.MaxValue;
|
---|
| 363 | const double tol = 1e-5;
|
---|
| 364 | double sumP = 0;
|
---|
| 365 |
|
---|
| 366 | // Iterate until we found a good perplexity
|
---|
| 367 | var iter = 0;
|
---|
[15571] | 368 | while (!found && iter < 200) { // 200 iterations as in tSNE implementation by van der Maarten
|
---|
[14788] | 369 |
|
---|
| 370 | // Compute Gaussian kernel row
|
---|
[15249] | 371 | for (var m = 0; m < n; m++) p[i, m] = Math.Exp(-beta * dd[i][m]);
|
---|
[14788] | 372 | p[i, i] = double.Epsilon;
|
---|
| 373 |
|
---|
| 374 | // Compute entropy of current row
|
---|
| 375 | sumP = double.Epsilon;
|
---|
[15249] | 376 | for (var m = 0; m < n; m++) sumP += p[i, m];
|
---|
[14788] | 377 | var h = 0.0;
|
---|
[15249] | 378 | for (var m = 0; m < n; m++) h += beta * (dd[i][m] * p[i, m]);
|
---|
[14788] | 379 | h = h / sumP + Math.Log(sumP);
|
---|
| 380 |
|
---|
| 381 | // Evaluate whether the entropy is within the tolerance level
|
---|
| 382 | var hdiff = h - Math.Log(perplexity);
|
---|
[15249] | 383 | if (hdiff < tol && -hdiff < tol) {
|
---|
[14788] | 384 | found = true;
|
---|
[15571] | 385 | }
|
---|
| 386 | else {
|
---|
[15249] | 387 | if (hdiff > 0) {
|
---|
[14788] | 388 | minBeta = beta;
|
---|
[15249] | 389 | if (maxBeta.IsAlmost(double.MaxValue) || maxBeta.IsAlmost(double.MinValue))
|
---|
[14788] | 390 | beta *= 2.0;
|
---|
| 391 | else
|
---|
| 392 | beta = (beta + maxBeta) / 2.0;
|
---|
[15571] | 393 | }
|
---|
| 394 | else {
|
---|
[14788] | 395 | maxBeta = beta;
|
---|
[15249] | 396 | if (minBeta.IsAlmost(double.MinValue) || minBeta.IsAlmost(double.MaxValue))
|
---|
[14788] | 397 | beta /= 2.0;
|
---|
| 398 | else
|
---|
| 399 | beta = (beta + minBeta) / 2.0;
|
---|
| 400 | }
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 | // Update iteration counter
|
---|
| 404 | iter++;
|
---|
| 405 | }
|
---|
| 406 |
|
---|
| 407 | // Row normalize P
|
---|
[15249] | 408 | for (var m = 0; m < n; m++) p[i, m] /= sumP;
|
---|
[14512] | 409 | }
|
---|
| 410 | }
|
---|
[15571] | 411 | private static double[][] ComputeDistances(IReadOnlyList<T> x, IDistance<T> distance) {
|
---|
| 412 | var res = new double[x.Count][];
|
---|
| 413 | for (var r = 0; r < x.Count; r++) {
|
---|
| 414 | var rowV = new double[x.Count];
|
---|
[14806] | 415 | // all distances must be symmetric
|
---|
[15249] | 416 | for (var c = 0; c < r; c++) {
|
---|
[14806] | 417 | rowV[c] = res[c][r];
|
---|
| 418 | }
|
---|
| 419 | rowV[r] = 0.0; // distance to self is zero for all distances
|
---|
[15571] | 420 | for (var c = r + 1; c < x.Count; c++) {
|
---|
[14806] | 421 | rowV[c] = distance.Get(x[r], x[c]);
|
---|
| 422 | }
|
---|
| 423 | res[r] = rowV;
|
---|
| 424 | }
|
---|
| 425 | return res;
|
---|
| 426 | // return x.Select(m => x.Select(n => distance.Get(m, n)).ToArray()).ToArray();
|
---|
[14788] | 427 | }
|
---|
| 428 | private static double EvaluateErrorExact(double[,] p, double[,] y, int n, int d) {
|
---|
| 429 | // Compute the squared Euclidean distance matrix
|
---|
| 430 | var dd = new double[n, n];
|
---|
| 431 | var q = new double[n, n];
|
---|
[14837] | 432 | ComputeSquaredEuclideanDistance(y, n, d, dd);
|
---|
[14414] | 433 |
|
---|
[14788] | 434 | // Compute Q-matrix and normalization sum
|
---|
| 435 | var sumQ = double.Epsilon;
|
---|
[15249] | 436 | for (var n1 = 0; n1 < n; n1++) {
|
---|
| 437 | for (var m = 0; m < n; m++) {
|
---|
| 438 | if (n1 != m) {
|
---|
[14788] | 439 | q[n1, m] = 1 / (1 + dd[n1, m]);
|
---|
| 440 | sumQ += q[n1, m];
|
---|
[15571] | 441 | }
|
---|
| 442 | else q[n1, m] = double.Epsilon;
|
---|
[14788] | 443 | }
|
---|
| 444 | }
|
---|
[15249] | 445 | for (var i = 0; i < n; i++) for (var j = 0; j < n; j++) q[i, j] /= sumQ;
|
---|
[14414] | 446 |
|
---|
[14788] | 447 | // Sum t-SNE error
|
---|
| 448 | var c = .0;
|
---|
[15249] | 449 | for (var i = 0; i < n; i++)
|
---|
[15571] | 450 | for (var j = 0; j < n; j++) {
|
---|
| 451 | c += p[i, j] * Math.Log((p[i, j] + float.Epsilon) / (q[i, j] + float.Epsilon));
|
---|
| 452 | }
|
---|
[14788] | 453 | return c;
|
---|
| 454 | }
|
---|
| 455 | private static double EvaluateErrorApproximate(IReadOnlyList<int> rowP, IReadOnlyList<int> colP, IReadOnlyList<double> valP, double[,] y, double theta) {
|
---|
| 456 | // Get estimate of normalization term
|
---|
| 457 | var n = y.GetLength(0);
|
---|
| 458 | var d = y.GetLength(1);
|
---|
| 459 | var tree = new SpacePartitioningTree(y);
|
---|
| 460 | var buff = new double[d];
|
---|
[15249] | 461 | var sumQ = 0.0;
|
---|
| 462 | for (var i = 0; i < n; i++) tree.ComputeNonEdgeForces(i, theta, buff, ref sumQ);
|
---|
[14414] | 463 |
|
---|
[14788] | 464 | // Loop over all edges to compute t-SNE error
|
---|
| 465 | var c = .0;
|
---|
[15249] | 466 | for (var k = 0; k < n; k++) {
|
---|
| 467 | for (var i = rowP[k]; i < rowP[k + 1]; i++) {
|
---|
[14788] | 468 | var q = .0;
|
---|
[15249] | 469 | for (var j = 0; j < d; j++) buff[j] = y[k, j];
|
---|
| 470 | for (var j = 0; j < d; j++) buff[j] -= y[colP[i], j];
|
---|
| 471 | for (var j = 0; j < d; j++) q += buff[j] * buff[j];
|
---|
[14837] | 472 | q = (1.0 / (1.0 + q)) / sumQ;
|
---|
[14788] | 473 | c += valP[i] * Math.Log((valP[i] + float.Epsilon) / (q + float.Epsilon));
|
---|
| 474 | }
|
---|
| 475 | }
|
---|
| 476 | return c;
|
---|
| 477 | }
|
---|
| 478 | private static void SymmetrizeMatrix(IReadOnlyList<int> rowP, IReadOnlyList<int> colP, IReadOnlyList<double> valP, out int[] symRowP, out int[] symColP, out double[] symValP) {
|
---|
| 479 | // Count number of elements and row counts of symmetric matrix
|
---|
| 480 | var n = rowP.Count - 1;
|
---|
| 481 | var rowCounts = new int[n];
|
---|
[15249] | 482 | for (var j = 0; j < n; j++) {
|
---|
| 483 | for (var i = rowP[j]; i < rowP[j + 1]; i++) {
|
---|
[14788] | 484 | // Check whether element (col_P[i], n) is present
|
---|
| 485 | var present = false;
|
---|
[15249] | 486 | for (var m = rowP[colP[i]]; m < rowP[colP[i] + 1]; m++) {
|
---|
| 487 | if (colP[m] == j) present = true;
|
---|
[14788] | 488 | }
|
---|
[15249] | 489 | if (present) rowCounts[j]++;
|
---|
[14788] | 490 | else {
|
---|
| 491 | rowCounts[j]++;
|
---|
| 492 | rowCounts[colP[i]]++;
|
---|
| 493 | }
|
---|
| 494 | }
|
---|
| 495 | }
|
---|
| 496 | var noElem = 0;
|
---|
[15249] | 497 | for (var i = 0; i < n; i++) noElem += rowCounts[i];
|
---|
[14414] | 498 |
|
---|
[14788] | 499 | // Allocate memory for symmetrized matrix
|
---|
| 500 | symRowP = new int[n + 1];
|
---|
| 501 | symColP = new int[noElem];
|
---|
| 502 | symValP = new double[noElem];
|
---|
[14414] | 503 |
|
---|
[14788] | 504 | // Construct new row indices for symmetric matrix
|
---|
| 505 | symRowP[0] = 0;
|
---|
[15249] | 506 | for (var i = 0; i < n; i++) symRowP[i + 1] = symRowP[i] + rowCounts[i];
|
---|
[14788] | 507 |
|
---|
| 508 | // Fill the result matrix
|
---|
| 509 | var offset = new int[n];
|
---|
[15249] | 510 | for (var j = 0; j < n; j++) {
|
---|
[15571] | 511 | for (var i = rowP[j]; i < rowP[j + 1]; i++) { // considering element(n, colP[i])
|
---|
[14788] | 512 |
|
---|
| 513 | // Check whether element (col_P[i], n) is present
|
---|
| 514 | var present = false;
|
---|
[15249] | 515 | for (var m = rowP[colP[i]]; m < rowP[colP[i] + 1]; m++) {
|
---|
| 516 | if (colP[m] != j) continue;
|
---|
[14788] | 517 | present = true;
|
---|
[15249] | 518 | if (j > colP[i]) continue; // make sure we do not add elements twice
|
---|
[14788] | 519 | symColP[symRowP[j] + offset[j]] = colP[i];
|
---|
| 520 | symColP[symRowP[colP[i]] + offset[colP[i]]] = j;
|
---|
| 521 | symValP[symRowP[j] + offset[j]] = valP[i] + valP[m];
|
---|
| 522 | symValP[symRowP[colP[i]] + offset[colP[i]]] = valP[i] + valP[m];
|
---|
[14414] | 523 | }
|
---|
[14788] | 524 |
|
---|
| 525 | // If (colP[i], n) is not present, there is no addition involved
|
---|
[15249] | 526 | if (!present) {
|
---|
[14788] | 527 | symColP[symRowP[j] + offset[j]] = colP[i];
|
---|
| 528 | symColP[symRowP[colP[i]] + offset[colP[i]]] = j;
|
---|
| 529 | symValP[symRowP[j] + offset[j]] = valP[i];
|
---|
| 530 | symValP[symRowP[colP[i]] + offset[colP[i]]] = valP[i];
|
---|
| 531 | }
|
---|
| 532 |
|
---|
| 533 | // Update offsets
|
---|
[15249] | 534 | if (present && (j > colP[i])) continue;
|
---|
[14788] | 535 | offset[j]++;
|
---|
[15249] | 536 | if (colP[i] != j) offset[colP[i]]++;
|
---|
[14414] | 537 | }
|
---|
| 538 | }
|
---|
| 539 |
|
---|
[15249] | 540 | for (var i = 0; i < noElem; i++) symValP[i] /= 2.0;
|
---|
[14414] | 541 | }
|
---|
[15249] | 542 | #endregion
|
---|
[14807] | 543 | }
|
---|
[14788] | 544 |
|
---|
[14807] | 545 | /// <summary>
|
---|
[15249] | 546 | /// Static interface to tSNE
|
---|
[14807] | 547 | /// </summary>
|
---|
| 548 | /// <param name="data"></param>
|
---|
| 549 | /// <param name="distance">The distance function used to differentiate similar from non-similar points, e.g. Euclidean distance.</param>
|
---|
| 550 | /// <param name="random">Random number generator</param>
|
---|
| 551 | /// <param name="newDimensions">Dimensionality of projected space (usually 2 for easy visual analysis).</param>
|
---|
| 552 | /// <param name="perplexity">Perplexity parameter of tSNE. Comparable to k in a k-nearest neighbour algorithm. Recommended value is floor(number of points /3) or lower</param>
|
---|
| 553 | /// <param name="iterations">Maximum number of iterations for gradient descent.</param>
|
---|
| 554 | /// <param name="theta">Value describing how much appoximated gradients my differ from exact gradients. Set to 0 for exact calculation and in [0,1] otherwise. CAUTION: exact calculation of forces requires building a non-sparse N*N matrix where N is the number of data points. This may exceed memory limitations.</param>
|
---|
| 555 | /// <param name="stopLyingIter">Number of iterations after which p is no longer approximated.</param>
|
---|
| 556 | /// <param name="momSwitchIter">Number of iterations after which the momentum in the gradient descent is switched.</param>
|
---|
| 557 | /// <param name="momentum">The initial momentum in the gradient descent.</param>
|
---|
| 558 | /// <param name="finalMomentum">The final momentum in gradient descent (after momentum switch).</param>
|
---|
| 559 | /// <param name="eta">Gradient descent learning rate.</param>
|
---|
| 560 | /// <returns></returns>
|
---|
| 561 | public static double[,] Run(T[] data, IDistance<T> distance, IRandom random,
|
---|
| 562 | int newDimensions = 2, double perplexity = 25, int iterations = 1000,
|
---|
[15571] | 563 | double theta = 0, int stopLyingIter = 0, int momSwitchIter = 0, double momentum = .5,
|
---|
[15249] | 564 | double finalMomentum = .8, double eta = 10.0
|
---|
[15571] | 565 | ) {
|
---|
[14807] | 566 | var state = CreateState(data, distance, random, newDimensions, perplexity,
|
---|
| 567 | theta, stopLyingIter, momSwitchIter, momentum, finalMomentum, eta);
|
---|
| 568 |
|
---|
[15249] | 569 | for (var i = 0; i < iterations - 1; i++) {
|
---|
[14807] | 570 | Iterate(state);
|
---|
| 571 | }
|
---|
| 572 | return Iterate(state);
|
---|
[14414] | 573 | }
|
---|
[14785] | 574 |
|
---|
[14807] | 575 | public static TSNEState CreateState(T[] data, IDistance<T> distance, IRandom random,
|
---|
| 576 | int newDimensions = 2, double perplexity = 25, double theta = 0,
|
---|
[15249] | 577 | int stopLyingIter = 0, int momSwitchIter = 0, double momentum = .5,
|
---|
[15571] | 578 | double finalMomentum = .8, double eta = 10.0, bool randomInit = true
|
---|
| 579 | ) {
|
---|
| 580 | return new TSNEState(data, distance, random, newDimensions, perplexity, theta, stopLyingIter, momSwitchIter, momentum, finalMomentum, eta, randomInit);
|
---|
[14788] | 581 | }
|
---|
[14414] | 582 |
|
---|
[14788] | 583 | public static double[,] Iterate(TSNEState state) {
|
---|
[15249] | 584 | if (state.exact)
|
---|
[14788] | 585 | ComputeExactGradient(state.p, state.newData, state.noDatapoints, state.newDimensions, state.dY);
|
---|
| 586 | else
|
---|
| 587 | ComputeApproximateGradient(state.rowP, state.colP, state.valP, state.newData, state.noDatapoints, state.newDimensions, state.dY, state.theta);
|
---|
[14414] | 588 |
|
---|
[14788] | 589 | // Update gains
|
---|
[15249] | 590 | for (var i = 0; i < state.noDatapoints; i++) {
|
---|
| 591 | for (var j = 0; j < state.newDimensions; j++) {
|
---|
[14788] | 592 | state.gains[i, j] = Math.Sign(state.dY[i, j]) != Math.Sign(state.uY[i, j])
|
---|
[15571] | 593 | ? state.gains[i, j] + .2 // +0.2 nd *0.8 are used in two separate implementations of tSNE -> seems to be correct
|
---|
[14837] | 594 | : state.gains[i, j] * .8;
|
---|
[15249] | 595 | if (state.gains[i, j] < .01) state.gains[i, j] = .01;
|
---|
[14414] | 596 | }
|
---|
[14788] | 597 | }
|
---|
[14414] | 598 |
|
---|
[14788] | 599 | // Perform gradient update (with momentum and gains)
|
---|
[15249] | 600 | for (var i = 0; i < state.noDatapoints; i++)
|
---|
[15571] | 601 | for (var j = 0; j < state.newDimensions; j++)
|
---|
| 602 | state.uY[i, j] = state.currentMomentum * state.uY[i, j] - state.eta * state.gains[i, j] * state.dY[i, j];
|
---|
[14788] | 603 |
|
---|
[15249] | 604 | for (var i = 0; i < state.noDatapoints; i++)
|
---|
[15571] | 605 | for (var j = 0; j < state.newDimensions; j++)
|
---|
| 606 | state.newData[i, j] = state.newData[i, j] + state.uY[i, j];
|
---|
[14788] | 607 |
|
---|
| 608 | // Make solution zero-mean
|
---|
| 609 | ZeroMean(state.newData);
|
---|
[14807] | 610 |
|
---|
[14788] | 611 | // Stop lying about the P-values after a while, and switch momentum
|
---|
[15249] | 612 | if (state.iter == state.stopLyingIter) {
|
---|
| 613 | if (state.exact)
|
---|
| 614 | for (var i = 0; i < state.noDatapoints; i++)
|
---|
[15571] | 615 | for (var j = 0; j < state.noDatapoints; j++)
|
---|
| 616 | state.p[i, j] /= 12.0;
|
---|
[14788] | 617 | else
|
---|
[15249] | 618 | for (var i = 0; i < state.rowP[state.noDatapoints]; i++)
|
---|
[14837] | 619 | state.valP[i] /= 12.0;
|
---|
[14414] | 620 | }
|
---|
[14788] | 621 |
|
---|
[15249] | 622 | if (state.iter == state.momSwitchIter)
|
---|
[14788] | 623 | state.currentMomentum = state.finalMomentum;
|
---|
| 624 |
|
---|
| 625 | state.iter++;
|
---|
| 626 | return state.newData;
|
---|
[14414] | 627 | }
|
---|
[14785] | 628 |
|
---|
[15249] | 629 | #region Helpers
|
---|
[14788] | 630 | private static void ComputeApproximateGradient(int[] rowP, int[] colP, double[] valP, double[,] y, int n, int d, double[,] dC, double theta) {
|
---|
| 631 | var tree = new SpacePartitioningTree(y);
|
---|
[15249] | 632 | var sumQ = 0.0;
|
---|
[14788] | 633 | var posF = new double[n, d];
|
---|
| 634 | var negF = new double[n, d];
|
---|
[15249] | 635 | SpacePartitioningTree.ComputeEdgeForces(rowP, colP, valP, n, posF, y, d);
|
---|
[14788] | 636 | var row = new double[d];
|
---|
[15249] | 637 | for (var n1 = 0; n1 < n; n1++) {
|
---|
| 638 | Array.Clear(row, 0, row.Length);
|
---|
[14788] | 639 | tree.ComputeNonEdgeForces(n1, theta, row, ref sumQ);
|
---|
[15249] | 640 | Buffer.BlockCopy(row, 0, negF, (sizeof(double) * n1 * d), d * sizeof(double));
|
---|
[14788] | 641 | }
|
---|
| 642 |
|
---|
| 643 | // Compute final t-SNE gradient
|
---|
[14856] | 644 | for (var i = 0; i < n; i++)
|
---|
[15571] | 645 | for (var j = 0; j < d; j++) {
|
---|
| 646 | dC[i, j] = posF[i, j] - negF[i, j] / sumQ;
|
---|
| 647 | }
|
---|
[14414] | 648 | }
|
---|
[14785] | 649 |
|
---|
[14414] | 650 | private static void ComputeExactGradient(double[,] p, double[,] y, int n, int d, double[,] dC) {
|
---|
| 651 | // Make sure the current gradient contains zeros
|
---|
[15249] | 652 | for (var i = 0; i < n; i++) for (var j = 0; j < d; j++) dC[i, j] = 0.0;
|
---|
[14414] | 653 |
|
---|
| 654 | // Compute the squared Euclidean distance matrix
|
---|
| 655 | var dd = new double[n, n];
|
---|
[14837] | 656 | ComputeSquaredEuclideanDistance(y, n, d, dd);
|
---|
[14414] | 657 |
|
---|
| 658 | // Compute Q-matrix and normalization sum
|
---|
| 659 | var q = new double[n, n];
|
---|
| 660 | var sumQ = .0;
|
---|
[15249] | 661 | for (var n1 = 0; n1 < n; n1++) {
|
---|
| 662 | for (var m = 0; m < n; m++) {
|
---|
| 663 | if (n1 == m) continue;
|
---|
[14414] | 664 | q[n1, m] = 1 / (1 + dd[n1, m]);
|
---|
| 665 | sumQ += q[n1, m];
|
---|
| 666 | }
|
---|
| 667 | }
|
---|
| 668 |
|
---|
| 669 | // Perform the computation of the gradient
|
---|
[15249] | 670 | for (var n1 = 0; n1 < n; n1++) {
|
---|
| 671 | for (var m = 0; m < n; m++) {
|
---|
| 672 | if (n1 == m) continue;
|
---|
[14414] | 673 | var mult = (p[n1, m] - q[n1, m] / sumQ) * q[n1, m];
|
---|
[15249] | 674 | for (var d1 = 0; d1 < d; d1++) {
|
---|
[14414] | 675 | dC[n1, d1] += (y[n1, d1] - y[m, d1]) * mult;
|
---|
| 676 | }
|
---|
| 677 | }
|
---|
| 678 | }
|
---|
| 679 | }
|
---|
[14788] | 680 |
|
---|
[14414] | 681 | private static void ComputeSquaredEuclideanDistance(double[,] x, int n, int d, double[,] dd) {
|
---|
| 682 | var dataSums = new double[n];
|
---|
[15249] | 683 | for (var i = 0; i < n; i++) {
|
---|
| 684 | for (var j = 0; j < d; j++) {
|
---|
[14414] | 685 | dataSums[i] += x[i, j] * x[i, j];
|
---|
| 686 | }
|
---|
| 687 | }
|
---|
[15249] | 688 | for (var i = 0; i < n; i++) {
|
---|
| 689 | for (var m = 0; m < n; m++) {
|
---|
[14414] | 690 | dd[i, m] = dataSums[i] + dataSums[m];
|
---|
| 691 | }
|
---|
| 692 | }
|
---|
[15249] | 693 | for (var i = 0; i < n; i++) {
|
---|
[14414] | 694 | dd[i, i] = 0.0;
|
---|
[15249] | 695 | for (var m = i + 1; m < n; m++) {
|
---|
[14414] | 696 | dd[i, m] = 0.0;
|
---|
[15249] | 697 | for (var j = 0; j < d; j++) {
|
---|
[14414] | 698 | dd[i, m] += (x[i, j] - x[m, j]) * (x[i, j] - x[m, j]);
|
---|
| 699 | }
|
---|
| 700 | dd[m, i] = dd[i, m];
|
---|
| 701 | }
|
---|
| 702 | }
|
---|
| 703 | }
|
---|
| 704 |
|
---|
| 705 | private static void ZeroMean(double[,] x) {
|
---|
| 706 | // Compute data mean
|
---|
| 707 | var n = x.GetLength(0);
|
---|
| 708 | var d = x.GetLength(1);
|
---|
| 709 | var mean = new double[d];
|
---|
[15249] | 710 | for (var i = 0; i < n; i++) {
|
---|
| 711 | for (var j = 0; j < d; j++) {
|
---|
[14414] | 712 | mean[j] += x[i, j];
|
---|
| 713 | }
|
---|
| 714 | }
|
---|
[15249] | 715 | for (var i = 0; i < d; i++) {
|
---|
[14414] | 716 | mean[i] /= n;
|
---|
| 717 | }
|
---|
| 718 | // Subtract data mean
|
---|
[15249] | 719 | for (var i = 0; i < n; i++) {
|
---|
| 720 | for (var j = 0; j < d; j++) {
|
---|
[14414] | 721 | x[i, j] -= mean[j];
|
---|
| 722 | }
|
---|
| 723 | }
|
---|
| 724 | }
|
---|
[15249] | 725 | #endregion
|
---|
[14414] | 726 | }
|
---|
[15571] | 727 | } |
---|