[14414] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 |
|
---|
| 21 | //Code is based on an implementation from Laurens van der Maaten
|
---|
| 22 |
|
---|
| 23 | /*
|
---|
| 24 | *
|
---|
| 25 | * Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
|
---|
| 26 | * All rights reserved.
|
---|
| 27 | *
|
---|
| 28 | * Redistribution and use in source and binary forms, with or without
|
---|
| 29 | * modification, are permitted provided that the following conditions are met:
|
---|
| 30 | * 1. Redistributions of source code must retain the above copyright
|
---|
| 31 | * notice, this list of conditions and the following disclaimer.
|
---|
| 32 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
| 33 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 34 | * documentation and/or other materials provided with the distribution.
|
---|
| 35 | * 3. All advertising materials mentioning features or use of this software
|
---|
| 36 | * must display the following acknowledgement:
|
---|
| 37 | * This product includes software developed by the Delft University of Technology.
|
---|
| 38 | * 4. Neither the name of the Delft University of Technology nor the names of
|
---|
| 39 | * its contributors may be used to endorse or promote products derived from
|
---|
| 40 | * this software without specific prior written permission.
|
---|
| 41 | *
|
---|
| 42 | * THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
|
---|
| 43 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 44 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
---|
| 45 | * EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
| 46 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
---|
| 47 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
---|
| 48 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
---|
| 49 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
---|
| 50 | * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
---|
| 51 | * OF SUCH DAMAGE.
|
---|
| 52 | *
|
---|
| 53 | */
|
---|
| 54 | #endregion
|
---|
| 55 |
|
---|
| 56 | using System;
|
---|
| 57 | using System.Collections.Generic;
|
---|
[14785] | 58 | using HeuristicLab.Collections;
|
---|
[14414] | 59 | using HeuristicLab.Common;
|
---|
| 60 | using HeuristicLab.Core;
|
---|
| 61 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 62 | using HeuristicLab.Random;
|
---|
| 63 |
|
---|
| 64 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 65 | [StorableClass]
|
---|
[14807] | 66 | public class TSNEStatic<T> {
|
---|
[14414] | 67 |
|
---|
[14788] | 68 | [StorableClass]
|
---|
| 69 | public sealed class TSNEState : DeepCloneable {
|
---|
[15249] | 70 | #region Storables
|
---|
[14788] | 71 | // initialized once
|
---|
[14806] | 72 | [Storable]
|
---|
[14788] | 73 | public IDistance<T> distance;
|
---|
[14806] | 74 | [Storable]
|
---|
[14788] | 75 | public IRandom random;
|
---|
[14806] | 76 | [Storable]
|
---|
[14788] | 77 | public double perplexity;
|
---|
[14806] | 78 | [Storable]
|
---|
[14788] | 79 | public bool exact;
|
---|
[14806] | 80 | [Storable]
|
---|
[14788] | 81 | public int noDatapoints;
|
---|
[14806] | 82 | [Storable]
|
---|
[14788] | 83 | public double finalMomentum;
|
---|
[14806] | 84 | [Storable]
|
---|
[14788] | 85 | public int momSwitchIter;
|
---|
[14806] | 86 | [Storable]
|
---|
[14788] | 87 | public int stopLyingIter;
|
---|
[14806] | 88 | [Storable]
|
---|
[14788] | 89 | public double theta;
|
---|
[14806] | 90 | [Storable]
|
---|
[14788] | 91 | public double eta;
|
---|
[14806] | 92 | [Storable]
|
---|
[14788] | 93 | public int newDimensions;
|
---|
[14414] | 94 |
|
---|
[14788] | 95 | // for approximate version: sparse representation of similarity/distance matrix
|
---|
[14806] | 96 | [Storable]
|
---|
[14788] | 97 | public double[] valP; // similarity/distance
|
---|
[14806] | 98 | [Storable]
|
---|
[14788] | 99 | public int[] rowP; // row index
|
---|
[14806] | 100 | [Storable]
|
---|
[14788] | 101 | public int[] colP; // col index
|
---|
[14414] | 102 |
|
---|
[14788] | 103 | // for exact version: dense representation of distance/similarity matrix
|
---|
[14806] | 104 | [Storable]
|
---|
[14788] | 105 | public double[,] p;
|
---|
[14512] | 106 |
|
---|
[14788] | 107 | // mapped data
|
---|
[14806] | 108 | [Storable]
|
---|
[14788] | 109 | public double[,] newData;
|
---|
[14414] | 110 |
|
---|
[14806] | 111 | [Storable]
|
---|
[14788] | 112 | public int iter;
|
---|
[14806] | 113 | [Storable]
|
---|
[14788] | 114 | public double currentMomentum;
|
---|
[14414] | 115 |
|
---|
[14788] | 116 | // helper variables (updated in each iteration)
|
---|
[14806] | 117 | [Storable]
|
---|
[14788] | 118 | public double[,] gains;
|
---|
[14806] | 119 | [Storable]
|
---|
[14788] | 120 | public double[,] uY;
|
---|
[14806] | 121 | [Storable]
|
---|
[14788] | 122 | public double[,] dY;
|
---|
[15249] | 123 | #endregion
|
---|
[14512] | 124 |
|
---|
[15249] | 125 | #region Constructors & Cloning
|
---|
[14788] | 126 | private TSNEState(TSNEState original, Cloner cloner) : base(original, cloner) {
|
---|
[15249] | 127 | distance = cloner.Clone(original.distance);
|
---|
| 128 | random = cloner.Clone(original.random);
|
---|
| 129 | perplexity = original.perplexity;
|
---|
| 130 | exact = original.exact;
|
---|
| 131 | noDatapoints = original.noDatapoints;
|
---|
| 132 | finalMomentum = original.finalMomentum;
|
---|
| 133 | momSwitchIter = original.momSwitchIter;
|
---|
| 134 | stopLyingIter = original.stopLyingIter;
|
---|
| 135 | theta = original.theta;
|
---|
| 136 | eta = original.eta;
|
---|
| 137 | newDimensions = original.newDimensions;
|
---|
| 138 | if (original.valP != null) {
|
---|
| 139 | valP = new double[original.valP.Length];
|
---|
| 140 | Array.Copy(original.valP, valP, valP.Length);
|
---|
[14806] | 141 | }
|
---|
[15249] | 142 | if (original.rowP != null) {
|
---|
| 143 | rowP = new int[original.rowP.Length];
|
---|
| 144 | Array.Copy(original.rowP, rowP, rowP.Length);
|
---|
[14806] | 145 | }
|
---|
[15249] | 146 | if (original.colP != null) {
|
---|
| 147 | colP = new int[original.colP.Length];
|
---|
| 148 | Array.Copy(original.colP, colP, colP.Length);
|
---|
[14806] | 149 | }
|
---|
[15249] | 150 | if (original.p != null) {
|
---|
| 151 | p = new double[original.p.GetLength(0), original.p.GetLength(1)];
|
---|
| 152 | Array.Copy(original.p, p, p.Length);
|
---|
[14806] | 153 | }
|
---|
[15249] | 154 | newData = new double[original.newData.GetLength(0), original.newData.GetLength(1)];
|
---|
| 155 | Array.Copy(original.newData, newData, newData.Length);
|
---|
| 156 | iter = original.iter;
|
---|
| 157 | currentMomentum = original.currentMomentum;
|
---|
| 158 | gains = new double[original.gains.GetLength(0), original.gains.GetLength(1)];
|
---|
| 159 | Array.Copy(original.gains, gains, gains.Length);
|
---|
| 160 | uY = new double[original.uY.GetLength(0), original.uY.GetLength(1)];
|
---|
| 161 | Array.Copy(original.uY, uY, uY.Length);
|
---|
| 162 | dY = new double[original.dY.GetLength(0), original.dY.GetLength(1)];
|
---|
| 163 | Array.Copy(original.dY, dY, dY.Length);
|
---|
[14788] | 164 | }
|
---|
[14806] | 165 |
|
---|
[14788] | 166 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 167 | return new TSNEState(this, cloner);
|
---|
| 168 | }
|
---|
[14414] | 169 |
|
---|
[14807] | 170 | [StorableConstructor]
|
---|
[14837] | 171 | public TSNEState(bool deserializing) { }
|
---|
[14788] | 172 | public TSNEState(T[] data, IDistance<T> distance, IRandom random, int newDimensions, double perplexity, double theta, int stopLyingIter, int momSwitchIter, double momentum, double finalMomentum, double eta) {
|
---|
| 173 | this.distance = distance;
|
---|
| 174 | this.random = random;
|
---|
| 175 | this.newDimensions = newDimensions;
|
---|
| 176 | this.perplexity = perplexity;
|
---|
| 177 | this.theta = theta;
|
---|
| 178 | this.stopLyingIter = stopLyingIter;
|
---|
| 179 | this.momSwitchIter = momSwitchIter;
|
---|
[15249] | 180 | currentMomentum = momentum;
|
---|
[14788] | 181 | this.finalMomentum = finalMomentum;
|
---|
| 182 | this.eta = eta;
|
---|
[14414] | 183 |
|
---|
[14788] | 184 | // initialize
|
---|
| 185 | noDatapoints = data.Length;
|
---|
[15249] | 186 | if (noDatapoints - 1 < 3 * perplexity)
|
---|
[14806] | 187 | throw new ArgumentException("Perplexity too large for the number of data points!");
|
---|
[14788] | 188 |
|
---|
| 189 | exact = Math.Abs(theta) < double.Epsilon;
|
---|
| 190 | newData = new double[noDatapoints, newDimensions];
|
---|
| 191 | dY = new double[noDatapoints, newDimensions];
|
---|
| 192 | uY = new double[noDatapoints, newDimensions];
|
---|
| 193 | gains = new double[noDatapoints, newDimensions];
|
---|
[15249] | 194 | for (var i = 0; i < noDatapoints; i++)
|
---|
| 195 | for (var j = 0; j < newDimensions; j++)
|
---|
[14788] | 196 | gains[i, j] = 1.0;
|
---|
| 197 |
|
---|
| 198 | p = null;
|
---|
| 199 | rowP = null;
|
---|
| 200 | colP = null;
|
---|
| 201 | valP = null;
|
---|
| 202 |
|
---|
| 203 | //Calculate Similarities
|
---|
[14858] | 204 | if (exact) p = CalculateExactSimilarites(data, distance, perplexity);
|
---|
[14788] | 205 | else CalculateApproximateSimilarities(data, distance, perplexity, out rowP, out colP, out valP);
|
---|
| 206 |
|
---|
[14837] | 207 | // Lie about the P-values (factor is 4 in the MATLAB implementation)
|
---|
[15249] | 208 | if (exact) for (var i = 0; i < noDatapoints; i++) for (var j = 0; j < noDatapoints; j++) p[i, j] *= 12.0;
|
---|
| 209 | else for (var i = 0; i < rowP[noDatapoints]; i++) valP[i] *= 12.0;
|
---|
[14788] | 210 |
|
---|
| 211 | // Initialize solution (randomly)
|
---|
| 212 | var rand = new NormalDistributedRandom(random, 0, 1);
|
---|
[15249] | 213 | for (var i = 0; i < noDatapoints; i++)
|
---|
| 214 | for (var j = 0; j < newDimensions; j++)
|
---|
[14837] | 215 | newData[i, j] = rand.NextDouble() * .0001;
|
---|
[14414] | 216 | }
|
---|
[15249] | 217 | #endregion
|
---|
[14414] | 218 |
|
---|
[14788] | 219 | public double EvaluateError() {
|
---|
[14806] | 220 | return exact ?
|
---|
| 221 | EvaluateErrorExact(p, newData, noDatapoints, newDimensions) :
|
---|
| 222 | EvaluateErrorApproximate(rowP, colP, valP, newData, theta);
|
---|
[14788] | 223 | }
|
---|
[14512] | 224 |
|
---|
[15249] | 225 | #region Helpers
|
---|
[14788] | 226 | private static void CalculateApproximateSimilarities(T[] data, IDistance<T> distance, double perplexity, out int[] rowP, out int[] colP, out double[] valP) {
|
---|
| 227 | // Compute asymmetric pairwise input similarities
|
---|
[14837] | 228 | ComputeGaussianPerplexity(data, distance, out rowP, out colP, out valP, perplexity, (int)(3 * perplexity));
|
---|
[14788] | 229 | // Symmetrize input similarities
|
---|
| 230 | int[] sRowP, symColP;
|
---|
| 231 | double[] sValP;
|
---|
| 232 | SymmetrizeMatrix(rowP, colP, valP, out sRowP, out symColP, out sValP);
|
---|
| 233 | rowP = sRowP;
|
---|
| 234 | colP = symColP;
|
---|
| 235 | valP = sValP;
|
---|
| 236 | var sumP = .0;
|
---|
[15249] | 237 | for (var i = 0; i < rowP[data.Length]; i++) sumP += valP[i];
|
---|
| 238 | for (var i = 0; i < rowP[data.Length]; i++) valP[i] /= sumP;
|
---|
[14788] | 239 | }
|
---|
[14806] | 240 |
|
---|
[14788] | 241 | private static double[,] CalculateExactSimilarites(T[] data, IDistance<T> distance, double perplexity) {
|
---|
| 242 | // Compute similarities
|
---|
| 243 | var p = new double[data.Length, data.Length];
|
---|
| 244 | ComputeGaussianPerplexity(data, distance, p, perplexity);
|
---|
| 245 | // Symmetrize input similarities
|
---|
[15249] | 246 | for (var n = 0; n < data.Length; n++) {
|
---|
| 247 | for (var m = n + 1; m < data.Length; m++) {
|
---|
[14788] | 248 | p[n, m] += p[m, n];
|
---|
| 249 | p[m, n] = p[n, m];
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 | var sumP = .0;
|
---|
[15249] | 253 | for (var i = 0; i < data.Length; i++) for (var j = 0; j < data.Length; j++) sumP += p[i, j];
|
---|
| 254 | for (var i = 0; i < data.Length; i++) for (var j = 0; j < data.Length; j++) p[i, j] /= sumP;
|
---|
[14788] | 255 | return p;
|
---|
| 256 | }
|
---|
[14742] | 257 |
|
---|
[14788] | 258 | private static void ComputeGaussianPerplexity(IReadOnlyList<T> x, IDistance<T> distance, out int[] rowP, out int[] colP, out double[] valP, double perplexity, int k) {
|
---|
[15249] | 259 | if (perplexity > k) throw new ArgumentException("Perplexity should be lower than k!");
|
---|
[14512] | 260 |
|
---|
[15249] | 261 | var n = x.Count;
|
---|
[14788] | 262 | // Allocate the memory we need
|
---|
| 263 | rowP = new int[n + 1];
|
---|
| 264 | colP = new int[n * k];
|
---|
| 265 | valP = new double[n * k];
|
---|
| 266 | var curP = new double[n - 1];
|
---|
| 267 | rowP[0] = 0;
|
---|
[15249] | 268 | for (var i = 0; i < n; i++) rowP[i + 1] = rowP[i] + k;
|
---|
[14512] | 269 |
|
---|
[14788] | 270 | var objX = new List<IndexedItem<T>>();
|
---|
[15249] | 271 | for (var i = 0; i < n; i++) objX.Add(new IndexedItem<T>(i, x[i]));
|
---|
[14512] | 272 |
|
---|
[14788] | 273 | // Build ball tree on data set
|
---|
[14837] | 274 | var tree = new VantagePointTree<IndexedItem<T>>(new IndexedItemDistance<T>(distance), objX);
|
---|
[14742] | 275 |
|
---|
[14788] | 276 | // Loop over all points to find nearest neighbors
|
---|
[15249] | 277 | for (var i = 0; i < n; i++) {
|
---|
[14788] | 278 | IList<IndexedItem<T>> indices;
|
---|
| 279 | IList<double> distances;
|
---|
[14742] | 280 |
|
---|
[14788] | 281 | // Find nearest neighbors
|
---|
| 282 | tree.Search(objX[i], k + 1, out indices, out distances);
|
---|
[14512] | 283 |
|
---|
[14788] | 284 | // Initialize some variables for binary search
|
---|
| 285 | var found = false;
|
---|
| 286 | var beta = 1.0;
|
---|
| 287 | var minBeta = double.MinValue;
|
---|
| 288 | var maxBeta = double.MaxValue;
|
---|
[15249] | 289 | const double tol = 1e-5;
|
---|
[14512] | 290 |
|
---|
[14788] | 291 | // Iterate until we found a good perplexity
|
---|
| 292 | var iter = 0; double sumP = 0;
|
---|
[15249] | 293 | while (!found && iter < 200) {
|
---|
[14512] | 294 |
|
---|
[14788] | 295 | // Compute Gaussian kernel row
|
---|
[15249] | 296 | for (var m = 0; m < k; m++) curP[m] = Math.Exp(-beta * distances[m + 1]);
|
---|
[14512] | 297 |
|
---|
[14788] | 298 | // Compute entropy of current row
|
---|
| 299 | sumP = double.Epsilon;
|
---|
[15249] | 300 | for (var m = 0; m < k; m++) sumP += curP[m];
|
---|
[14788] | 301 | var h = .0;
|
---|
[15249] | 302 | for (var m = 0; m < k; m++) h += beta * (distances[m + 1] * curP[m]);
|
---|
[14788] | 303 | h = h / sumP + Math.Log(sumP);
|
---|
| 304 |
|
---|
| 305 | // Evaluate whether the entropy is within the tolerance level
|
---|
| 306 | var hdiff = h - Math.Log(perplexity);
|
---|
[15249] | 307 | if (hdiff < tol && -hdiff < tol) {
|
---|
[14788] | 308 | found = true;
|
---|
| 309 | } else {
|
---|
[15249] | 310 | if (hdiff > 0) {
|
---|
[14788] | 311 | minBeta = beta;
|
---|
[15249] | 312 | if (maxBeta.IsAlmost(double.MaxValue) || maxBeta.IsAlmost(double.MinValue))
|
---|
[14788] | 313 | beta *= 2.0;
|
---|
| 314 | else
|
---|
| 315 | beta = (beta + maxBeta) / 2.0;
|
---|
| 316 | } else {
|
---|
| 317 | maxBeta = beta;
|
---|
[15249] | 318 | if (minBeta.IsAlmost(double.MinValue) || minBeta.IsAlmost(double.MaxValue))
|
---|
[14788] | 319 | beta /= 2.0;
|
---|
| 320 | else
|
---|
| 321 | beta = (beta + minBeta) / 2.0;
|
---|
| 322 | }
|
---|
| 323 | }
|
---|
| 324 |
|
---|
| 325 | // Update iteration counter
|
---|
| 326 | iter++;
|
---|
| 327 | }
|
---|
| 328 |
|
---|
| 329 | // Row-normalize current row of P and store in matrix
|
---|
[15249] | 330 | for (var m = 0; m < k; m++) curP[m] /= sumP;
|
---|
| 331 | for (var m = 0; m < k; m++) {
|
---|
[14788] | 332 | colP[rowP[i] + m] = indices[m + 1].Index;
|
---|
| 333 | valP[rowP[i] + m] = curP[m];
|
---|
| 334 | }
|
---|
[14512] | 335 | }
|
---|
| 336 | }
|
---|
[14788] | 337 | private static void ComputeGaussianPerplexity(T[] x, IDistance<T> distance, double[,] p, double perplexity) {
|
---|
| 338 | // Compute the distance matrix
|
---|
| 339 | var dd = ComputeDistances(x, distance);
|
---|
| 340 |
|
---|
[15249] | 341 | var n = x.Length;
|
---|
[14788] | 342 | // Compute the Gaussian kernel row by row
|
---|
[15249] | 343 | for (var i = 0; i < n; i++) {
|
---|
[14788] | 344 | // Initialize some variables
|
---|
| 345 | var found = false;
|
---|
| 346 | var beta = 1.0;
|
---|
[14837] | 347 | var minBeta = double.MinValue;
|
---|
[14788] | 348 | var maxBeta = double.MaxValue;
|
---|
| 349 | const double tol = 1e-5;
|
---|
| 350 | double sumP = 0;
|
---|
| 351 |
|
---|
| 352 | // Iterate until we found a good perplexity
|
---|
| 353 | var iter = 0;
|
---|
[15249] | 354 | while (!found && iter < 200) { // 200 iterations as in tSNE implementation by van der Maarten
|
---|
[14788] | 355 |
|
---|
| 356 | // Compute Gaussian kernel row
|
---|
[15249] | 357 | for (var m = 0; m < n; m++) p[i, m] = Math.Exp(-beta * dd[i][m]);
|
---|
[14788] | 358 | p[i, i] = double.Epsilon;
|
---|
| 359 |
|
---|
| 360 | // Compute entropy of current row
|
---|
| 361 | sumP = double.Epsilon;
|
---|
[15249] | 362 | for (var m = 0; m < n; m++) sumP += p[i, m];
|
---|
[14788] | 363 | var h = 0.0;
|
---|
[15249] | 364 | for (var m = 0; m < n; m++) h += beta * (dd[i][m] * p[i, m]);
|
---|
[14788] | 365 | h = h / sumP + Math.Log(sumP);
|
---|
| 366 |
|
---|
| 367 | // Evaluate whether the entropy is within the tolerance level
|
---|
| 368 | var hdiff = h - Math.Log(perplexity);
|
---|
[15249] | 369 | if (hdiff < tol && -hdiff < tol) {
|
---|
[14788] | 370 | found = true;
|
---|
| 371 | } else {
|
---|
[15249] | 372 | if (hdiff > 0) {
|
---|
[14788] | 373 | minBeta = beta;
|
---|
[15249] | 374 | if (maxBeta.IsAlmost(double.MaxValue) || maxBeta.IsAlmost(double.MinValue))
|
---|
[14788] | 375 | beta *= 2.0;
|
---|
| 376 | else
|
---|
| 377 | beta = (beta + maxBeta) / 2.0;
|
---|
| 378 | } else {
|
---|
| 379 | maxBeta = beta;
|
---|
[15249] | 380 | if (minBeta.IsAlmost(double.MinValue) || minBeta.IsAlmost(double.MaxValue))
|
---|
[14788] | 381 | beta /= 2.0;
|
---|
| 382 | else
|
---|
| 383 | beta = (beta + minBeta) / 2.0;
|
---|
| 384 | }
|
---|
| 385 | }
|
---|
| 386 |
|
---|
| 387 | // Update iteration counter
|
---|
| 388 | iter++;
|
---|
| 389 | }
|
---|
| 390 |
|
---|
| 391 | // Row normalize P
|
---|
[15249] | 392 | for (var m = 0; m < n; m++) p[i, m] /= sumP;
|
---|
[14512] | 393 | }
|
---|
| 394 | }
|
---|
| 395 |
|
---|
[14788] | 396 | private static double[][] ComputeDistances(T[] x, IDistance<T> distance) {
|
---|
[14806] | 397 | var res = new double[x.Length][];
|
---|
[15249] | 398 | for (var r = 0; r < x.Length; r++) {
|
---|
[14806] | 399 | var rowV = new double[x.Length];
|
---|
| 400 | // all distances must be symmetric
|
---|
[15249] | 401 | for (var c = 0; c < r; c++) {
|
---|
[14806] | 402 | rowV[c] = res[c][r];
|
---|
| 403 | }
|
---|
| 404 | rowV[r] = 0.0; // distance to self is zero for all distances
|
---|
[15249] | 405 | for (var c = r + 1; c < x.Length; c++) {
|
---|
[14806] | 406 | rowV[c] = distance.Get(x[r], x[c]);
|
---|
| 407 | }
|
---|
| 408 | res[r] = rowV;
|
---|
| 409 | }
|
---|
| 410 | return res;
|
---|
| 411 | // return x.Select(m => x.Select(n => distance.Get(m, n)).ToArray()).ToArray();
|
---|
[14788] | 412 | }
|
---|
[14414] | 413 |
|
---|
[14788] | 414 | private static double EvaluateErrorExact(double[,] p, double[,] y, int n, int d) {
|
---|
| 415 | // Compute the squared Euclidean distance matrix
|
---|
| 416 | var dd = new double[n, n];
|
---|
| 417 | var q = new double[n, n];
|
---|
[14837] | 418 | ComputeSquaredEuclideanDistance(y, n, d, dd);
|
---|
[14414] | 419 |
|
---|
[14788] | 420 | // Compute Q-matrix and normalization sum
|
---|
| 421 | var sumQ = double.Epsilon;
|
---|
[15249] | 422 | for (var n1 = 0; n1 < n; n1++) {
|
---|
| 423 | for (var m = 0; m < n; m++) {
|
---|
| 424 | if (n1 != m) {
|
---|
[14788] | 425 | q[n1, m] = 1 / (1 + dd[n1, m]);
|
---|
| 426 | sumQ += q[n1, m];
|
---|
| 427 | } else q[n1, m] = double.Epsilon;
|
---|
| 428 | }
|
---|
| 429 | }
|
---|
[15249] | 430 | for (var i = 0; i < n; i++) for (var j = 0; j < n; j++) q[i, j] /= sumQ;
|
---|
[14414] | 431 |
|
---|
[14788] | 432 | // Sum t-SNE error
|
---|
| 433 | var c = .0;
|
---|
[15249] | 434 | for (var i = 0; i < n; i++)
|
---|
| 435 | for (var j = 0; j < n; j++) {
|
---|
[14788] | 436 | c += p[i, j] * Math.Log((p[i, j] + float.Epsilon) / (q[i, j] + float.Epsilon));
|
---|
| 437 | }
|
---|
| 438 | return c;
|
---|
| 439 | }
|
---|
[14806] | 440 |
|
---|
[14788] | 441 | private static double EvaluateErrorApproximate(IReadOnlyList<int> rowP, IReadOnlyList<int> colP, IReadOnlyList<double> valP, double[,] y, double theta) {
|
---|
| 442 | // Get estimate of normalization term
|
---|
| 443 | var n = y.GetLength(0);
|
---|
| 444 | var d = y.GetLength(1);
|
---|
| 445 | var tree = new SpacePartitioningTree(y);
|
---|
| 446 | var buff = new double[d];
|
---|
[15249] | 447 | var sumQ = 0.0;
|
---|
| 448 | for (var i = 0; i < n; i++) tree.ComputeNonEdgeForces(i, theta, buff, ref sumQ);
|
---|
[14414] | 449 |
|
---|
[14788] | 450 | // Loop over all edges to compute t-SNE error
|
---|
| 451 | var c = .0;
|
---|
[15249] | 452 | for (var k = 0; k < n; k++) {
|
---|
| 453 | for (var i = rowP[k]; i < rowP[k + 1]; i++) {
|
---|
[14788] | 454 | var q = .0;
|
---|
[15249] | 455 | for (var j = 0; j < d; j++) buff[j] = y[k, j];
|
---|
| 456 | for (var j = 0; j < d; j++) buff[j] -= y[colP[i], j];
|
---|
| 457 | for (var j = 0; j < d; j++) q += buff[j] * buff[j];
|
---|
[14837] | 458 | q = (1.0 / (1.0 + q)) / sumQ;
|
---|
[14788] | 459 | c += valP[i] * Math.Log((valP[i] + float.Epsilon) / (q + float.Epsilon));
|
---|
| 460 | }
|
---|
| 461 | }
|
---|
| 462 | return c;
|
---|
| 463 | }
|
---|
| 464 | private static void SymmetrizeMatrix(IReadOnlyList<int> rowP, IReadOnlyList<int> colP, IReadOnlyList<double> valP, out int[] symRowP, out int[] symColP, out double[] symValP) {
|
---|
[14414] | 465 |
|
---|
[14788] | 466 | // Count number of elements and row counts of symmetric matrix
|
---|
| 467 | var n = rowP.Count - 1;
|
---|
| 468 | var rowCounts = new int[n];
|
---|
[15249] | 469 | for (var j = 0; j < n; j++) {
|
---|
| 470 | for (var i = rowP[j]; i < rowP[j + 1]; i++) {
|
---|
[14414] | 471 |
|
---|
[14788] | 472 | // Check whether element (col_P[i], n) is present
|
---|
| 473 | var present = false;
|
---|
[15249] | 474 | for (var m = rowP[colP[i]]; m < rowP[colP[i] + 1]; m++) {
|
---|
| 475 | if (colP[m] == j) present = true;
|
---|
[14788] | 476 | }
|
---|
[15249] | 477 | if (present) rowCounts[j]++;
|
---|
[14788] | 478 | else {
|
---|
| 479 | rowCounts[j]++;
|
---|
| 480 | rowCounts[colP[i]]++;
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | }
|
---|
| 484 | var noElem = 0;
|
---|
[15249] | 485 | for (var i = 0; i < n; i++) noElem += rowCounts[i];
|
---|
[14414] | 486 |
|
---|
[14788] | 487 | // Allocate memory for symmetrized matrix
|
---|
| 488 | symRowP = new int[n + 1];
|
---|
| 489 | symColP = new int[noElem];
|
---|
| 490 | symValP = new double[noElem];
|
---|
[14414] | 491 |
|
---|
[14788] | 492 | // Construct new row indices for symmetric matrix
|
---|
| 493 | symRowP[0] = 0;
|
---|
[15249] | 494 | for (var i = 0; i < n; i++) symRowP[i + 1] = symRowP[i] + rowCounts[i];
|
---|
[14788] | 495 |
|
---|
| 496 | // Fill the result matrix
|
---|
| 497 | var offset = new int[n];
|
---|
[15249] | 498 | for (var j = 0; j < n; j++) {
|
---|
| 499 | for (var i = rowP[j]; i < rowP[j + 1]; i++) { // considering element(n, colP[i])
|
---|
[14788] | 500 |
|
---|
| 501 | // Check whether element (col_P[i], n) is present
|
---|
| 502 | var present = false;
|
---|
[15249] | 503 | for (var m = rowP[colP[i]]; m < rowP[colP[i] + 1]; m++) {
|
---|
| 504 | if (colP[m] != j) continue;
|
---|
[14788] | 505 | present = true;
|
---|
[15249] | 506 | if (j > colP[i]) continue; // make sure we do not add elements twice
|
---|
[14788] | 507 | symColP[symRowP[j] + offset[j]] = colP[i];
|
---|
| 508 | symColP[symRowP[colP[i]] + offset[colP[i]]] = j;
|
---|
| 509 | symValP[symRowP[j] + offset[j]] = valP[i] + valP[m];
|
---|
| 510 | symValP[symRowP[colP[i]] + offset[colP[i]]] = valP[i] + valP[m];
|
---|
[14414] | 511 | }
|
---|
[14788] | 512 |
|
---|
| 513 | // If (colP[i], n) is not present, there is no addition involved
|
---|
[15249] | 514 | if (!present) {
|
---|
[14788] | 515 | symColP[symRowP[j] + offset[j]] = colP[i];
|
---|
| 516 | symColP[symRowP[colP[i]] + offset[colP[i]]] = j;
|
---|
| 517 | symValP[symRowP[j] + offset[j]] = valP[i];
|
---|
| 518 | symValP[symRowP[colP[i]] + offset[colP[i]]] = valP[i];
|
---|
| 519 | }
|
---|
| 520 |
|
---|
| 521 | // Update offsets
|
---|
[15249] | 522 | if (present && (j > colP[i])) continue;
|
---|
[14788] | 523 | offset[j]++;
|
---|
[15249] | 524 | if (colP[i] != j) offset[colP[i]]++;
|
---|
[14414] | 525 | }
|
---|
| 526 | }
|
---|
| 527 |
|
---|
[15249] | 528 | for (var i = 0; i < noElem; i++) symValP[i] /= 2.0;
|
---|
[14414] | 529 | }
|
---|
[15249] | 530 | #endregion
|
---|
[14807] | 531 | }
|
---|
[14788] | 532 |
|
---|
[14807] | 533 | /// <summary>
|
---|
[15249] | 534 | /// Static interface to tSNE
|
---|
[14807] | 535 | /// </summary>
|
---|
| 536 | /// <param name="data"></param>
|
---|
| 537 | /// <param name="distance">The distance function used to differentiate similar from non-similar points, e.g. Euclidean distance.</param>
|
---|
| 538 | /// <param name="random">Random number generator</param>
|
---|
| 539 | /// <param name="newDimensions">Dimensionality of projected space (usually 2 for easy visual analysis).</param>
|
---|
| 540 | /// <param name="perplexity">Perplexity parameter of tSNE. Comparable to k in a k-nearest neighbour algorithm. Recommended value is floor(number of points /3) or lower</param>
|
---|
| 541 | /// <param name="iterations">Maximum number of iterations for gradient descent.</param>
|
---|
| 542 | /// <param name="theta">Value describing how much appoximated gradients my differ from exact gradients. Set to 0 for exact calculation and in [0,1] otherwise. CAUTION: exact calculation of forces requires building a non-sparse N*N matrix where N is the number of data points. This may exceed memory limitations.</param>
|
---|
| 543 | /// <param name="stopLyingIter">Number of iterations after which p is no longer approximated.</param>
|
---|
| 544 | /// <param name="momSwitchIter">Number of iterations after which the momentum in the gradient descent is switched.</param>
|
---|
| 545 | /// <param name="momentum">The initial momentum in the gradient descent.</param>
|
---|
| 546 | /// <param name="finalMomentum">The final momentum in gradient descent (after momentum switch).</param>
|
---|
| 547 | /// <param name="eta">Gradient descent learning rate.</param>
|
---|
| 548 | /// <returns></returns>
|
---|
| 549 | public static double[,] Run(T[] data, IDistance<T> distance, IRandom random,
|
---|
| 550 | int newDimensions = 2, double perplexity = 25, int iterations = 1000,
|
---|
| 551 | double theta = 0,
|
---|
[15249] | 552 | int stopLyingIter = 0, int momSwitchIter = 0, double momentum = .5,
|
---|
| 553 | double finalMomentum = .8, double eta = 10.0
|
---|
[14807] | 554 | ) {
|
---|
| 555 | var state = CreateState(data, distance, random, newDimensions, perplexity,
|
---|
| 556 | theta, stopLyingIter, momSwitchIter, momentum, finalMomentum, eta);
|
---|
| 557 |
|
---|
[15249] | 558 | for (var i = 0; i < iterations - 1; i++) {
|
---|
[14807] | 559 | Iterate(state);
|
---|
| 560 | }
|
---|
| 561 | return Iterate(state);
|
---|
[14414] | 562 | }
|
---|
[14785] | 563 |
|
---|
[14807] | 564 | public static TSNEState CreateState(T[] data, IDistance<T> distance, IRandom random,
|
---|
| 565 | int newDimensions = 2, double perplexity = 25, double theta = 0,
|
---|
[15249] | 566 | int stopLyingIter = 0, int momSwitchIter = 0, double momentum = .5,
|
---|
| 567 | double finalMomentum = .8, double eta = 10.0
|
---|
[14788] | 568 | ) {
|
---|
| 569 | return new TSNEState(data, distance, random, newDimensions, perplexity, theta, stopLyingIter, momSwitchIter, momentum, finalMomentum, eta);
|
---|
| 570 | }
|
---|
[14414] | 571 |
|
---|
[14788] | 572 | public static double[,] Iterate(TSNEState state) {
|
---|
[15249] | 573 | if (state.exact)
|
---|
[14788] | 574 | ComputeExactGradient(state.p, state.newData, state.noDatapoints, state.newDimensions, state.dY);
|
---|
| 575 | else
|
---|
| 576 | ComputeApproximateGradient(state.rowP, state.colP, state.valP, state.newData, state.noDatapoints, state.newDimensions, state.dY, state.theta);
|
---|
[14414] | 577 |
|
---|
[14788] | 578 | // Update gains
|
---|
[15249] | 579 | for (var i = 0; i < state.noDatapoints; i++) {
|
---|
| 580 | for (var j = 0; j < state.newDimensions; j++) {
|
---|
[14788] | 581 | state.gains[i, j] = Math.Sign(state.dY[i, j]) != Math.Sign(state.uY[i, j])
|
---|
[14837] | 582 | ? state.gains[i, j] + .2 // +0.2 nd *0.8 are used in two separate implementations of tSNE -> seems to be correct
|
---|
| 583 | : state.gains[i, j] * .8;
|
---|
[14414] | 584 |
|
---|
[15249] | 585 | if (state.gains[i, j] < .01) state.gains[i, j] = .01;
|
---|
[14414] | 586 | }
|
---|
[14788] | 587 | }
|
---|
[14414] | 588 |
|
---|
[14788] | 589 |
|
---|
| 590 | // Perform gradient update (with momentum and gains)
|
---|
[15249] | 591 | for (var i = 0; i < state.noDatapoints; i++)
|
---|
| 592 | for (var j = 0; j < state.newDimensions; j++)
|
---|
[14788] | 593 | state.uY[i, j] = state.currentMomentum * state.uY[i, j] - state.eta * state.gains[i, j] * state.dY[i, j];
|
---|
| 594 |
|
---|
[15249] | 595 | for (var i = 0; i < state.noDatapoints; i++)
|
---|
| 596 | for (var j = 0; j < state.newDimensions; j++)
|
---|
[14788] | 597 | state.newData[i, j] = state.newData[i, j] + state.uY[i, j];
|
---|
| 598 |
|
---|
| 599 | // Make solution zero-mean
|
---|
| 600 | ZeroMean(state.newData);
|
---|
[14807] | 601 |
|
---|
[14788] | 602 | // Stop lying about the P-values after a while, and switch momentum
|
---|
[15249] | 603 | if (state.iter == state.stopLyingIter) {
|
---|
| 604 | if (state.exact)
|
---|
| 605 | for (var i = 0; i < state.noDatapoints; i++)
|
---|
| 606 | for (var j = 0; j < state.noDatapoints; j++)
|
---|
[14837] | 607 | state.p[i, j] /= 12.0;
|
---|
[14788] | 608 | else
|
---|
[15249] | 609 | for (var i = 0; i < state.rowP[state.noDatapoints]; i++)
|
---|
[14837] | 610 | state.valP[i] /= 12.0;
|
---|
[14414] | 611 | }
|
---|
[14788] | 612 |
|
---|
[15249] | 613 | if (state.iter == state.momSwitchIter)
|
---|
[14788] | 614 | state.currentMomentum = state.finalMomentum;
|
---|
| 615 |
|
---|
| 616 | state.iter++;
|
---|
| 617 | return state.newData;
|
---|
[14414] | 618 | }
|
---|
[14785] | 619 |
|
---|
[15249] | 620 | #region Helpers
|
---|
[14788] | 621 | private static void ComputeApproximateGradient(int[] rowP, int[] colP, double[] valP, double[,] y, int n, int d, double[,] dC, double theta) {
|
---|
| 622 | var tree = new SpacePartitioningTree(y);
|
---|
[15249] | 623 | var sumQ = 0.0;
|
---|
[14788] | 624 | var posF = new double[n, d];
|
---|
| 625 | var negF = new double[n, d];
|
---|
[15249] | 626 | SpacePartitioningTree.ComputeEdgeForces(rowP, colP, valP, n, posF, y, d);
|
---|
[14788] | 627 | var row = new double[d];
|
---|
[15249] | 628 | for (var n1 = 0; n1 < n; n1++) {
|
---|
| 629 | Array.Clear(row, 0, row.Length);
|
---|
[14788] | 630 | tree.ComputeNonEdgeForces(n1, theta, row, ref sumQ);
|
---|
[15249] | 631 | Buffer.BlockCopy(row, 0, negF, (sizeof(double) * n1 * d), d * sizeof(double));
|
---|
[14788] | 632 | }
|
---|
| 633 |
|
---|
| 634 | // Compute final t-SNE gradient
|
---|
[14856] | 635 | for (var i = 0; i < n; i++)
|
---|
[15249] | 636 | for (var j = 0; j < d; j++) {
|
---|
[14788] | 637 | dC[i, j] = posF[i, j] - negF[i, j] / sumQ;
|
---|
| 638 | }
|
---|
[14414] | 639 | }
|
---|
[14785] | 640 |
|
---|
[14414] | 641 | private static void ComputeExactGradient(double[,] p, double[,] y, int n, int d, double[,] dC) {
|
---|
| 642 | // Make sure the current gradient contains zeros
|
---|
[15249] | 643 | for (var i = 0; i < n; i++) for (var j = 0; j < d; j++) dC[i, j] = 0.0;
|
---|
[14414] | 644 |
|
---|
| 645 | // Compute the squared Euclidean distance matrix
|
---|
| 646 | var dd = new double[n, n];
|
---|
[14837] | 647 | ComputeSquaredEuclideanDistance(y, n, d, dd);
|
---|
[14414] | 648 |
|
---|
| 649 | // Compute Q-matrix and normalization sum
|
---|
| 650 | var q = new double[n, n];
|
---|
| 651 | var sumQ = .0;
|
---|
[15249] | 652 | for (var n1 = 0; n1 < n; n1++) {
|
---|
| 653 | for (var m = 0; m < n; m++) {
|
---|
| 654 | if (n1 == m) continue;
|
---|
[14414] | 655 | q[n1, m] = 1 / (1 + dd[n1, m]);
|
---|
| 656 | sumQ += q[n1, m];
|
---|
| 657 | }
|
---|
| 658 | }
|
---|
| 659 |
|
---|
| 660 | // Perform the computation of the gradient
|
---|
[15249] | 661 | for (var n1 = 0; n1 < n; n1++) {
|
---|
| 662 | for (var m = 0; m < n; m++) {
|
---|
| 663 | if (n1 == m) continue;
|
---|
[14414] | 664 | var mult = (p[n1, m] - q[n1, m] / sumQ) * q[n1, m];
|
---|
[15249] | 665 | for (var d1 = 0; d1 < d; d1++) {
|
---|
[14414] | 666 | dC[n1, d1] += (y[n1, d1] - y[m, d1]) * mult;
|
---|
| 667 | }
|
---|
| 668 | }
|
---|
| 669 | }
|
---|
| 670 | }
|
---|
[14788] | 671 |
|
---|
[14414] | 672 | private static void ComputeSquaredEuclideanDistance(double[,] x, int n, int d, double[,] dd) {
|
---|
| 673 | var dataSums = new double[n];
|
---|
[15249] | 674 | for (var i = 0; i < n; i++) {
|
---|
| 675 | for (var j = 0; j < d; j++) {
|
---|
[14414] | 676 | dataSums[i] += x[i, j] * x[i, j];
|
---|
| 677 | }
|
---|
| 678 | }
|
---|
[15249] | 679 | for (var i = 0; i < n; i++) {
|
---|
| 680 | for (var m = 0; m < n; m++) {
|
---|
[14414] | 681 | dd[i, m] = dataSums[i] + dataSums[m];
|
---|
| 682 | }
|
---|
| 683 | }
|
---|
[15249] | 684 | for (var i = 0; i < n; i++) {
|
---|
[14414] | 685 | dd[i, i] = 0.0;
|
---|
[15249] | 686 | for (var m = i + 1; m < n; m++) {
|
---|
[14414] | 687 | dd[i, m] = 0.0;
|
---|
[15249] | 688 | for (var j = 0; j < d; j++) {
|
---|
[14414] | 689 | dd[i, m] += (x[i, j] - x[m, j]) * (x[i, j] - x[m, j]);
|
---|
| 690 | }
|
---|
| 691 | dd[m, i] = dd[i, m];
|
---|
| 692 | }
|
---|
| 693 | }
|
---|
| 694 | }
|
---|
| 695 |
|
---|
| 696 | private static void ZeroMean(double[,] x) {
|
---|
| 697 | // Compute data mean
|
---|
| 698 | var n = x.GetLength(0);
|
---|
| 699 | var d = x.GetLength(1);
|
---|
| 700 | var mean = new double[d];
|
---|
[15249] | 701 | for (var i = 0; i < n; i++) {
|
---|
| 702 | for (var j = 0; j < d; j++) {
|
---|
[14414] | 703 | mean[j] += x[i, j];
|
---|
| 704 | }
|
---|
| 705 | }
|
---|
[15249] | 706 | for (var i = 0; i < d; i++) {
|
---|
[14414] | 707 | mean[i] /= n;
|
---|
| 708 | }
|
---|
| 709 | // Subtract data mean
|
---|
[15249] | 710 | for (var i = 0; i < n; i++) {
|
---|
| 711 | for (var j = 0; j < d; j++) {
|
---|
[14414] | 712 | x[i, j] -= mean[j];
|
---|
| 713 | }
|
---|
| 714 | }
|
---|
| 715 | }
|
---|
[15249] | 716 | #endregion
|
---|
[14414] | 717 | }
|
---|
| 718 | }
|
---|