1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Problems.DataAnalysis;
|
---|
25 | using LibSVM;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
28 | public class SupportVectorMachineUtil {
|
---|
29 | /// <summary>
|
---|
30 | /// Transforms <paramref name="problemData"/> into a data structure as needed by libSVM.
|
---|
31 | /// </summary>
|
---|
32 | /// <param name="problemData">The problem data to transform</param>
|
---|
33 | /// <param name="rowIndices">The rows of the dataset that should be contained in the resulting SVM-problem</param>
|
---|
34 | /// <returns>A problem data type that can be used to train a support vector machine.</returns>
|
---|
35 | public static svm_problem CreateSvmProblem(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables, IEnumerable<int> rowIndices) {
|
---|
36 | double[] targetVector =
|
---|
37 | dataset.GetDoubleValues(targetVariable, rowIndices).ToArray();
|
---|
38 |
|
---|
39 | svm_node[][] nodes = new svm_node[targetVector.Length][];
|
---|
40 | List<svm_node> tempRow;
|
---|
41 | int maxNodeIndex = 0;
|
---|
42 | int svmProblemRowIndex = 0;
|
---|
43 | List<string> inputVariablesList = inputVariables.ToList();
|
---|
44 | foreach (int row in rowIndices) {
|
---|
45 | tempRow = new List<svm_node>();
|
---|
46 | int colIndex = 1; // make sure the smallest node index for SVM = 1
|
---|
47 | foreach (var inputVariable in inputVariablesList) {
|
---|
48 | double value = dataset.GetDoubleValue(inputVariable, row);
|
---|
49 | // SVM also works with missing values
|
---|
50 | // => don't add NaN values in the dataset to the sparse SVM matrix representation
|
---|
51 | if (!double.IsNaN(value)) {
|
---|
52 | tempRow.Add(new svm_node() { index = colIndex, value = value }); // nodes must be sorted in ascending ordered by column index
|
---|
53 | if (colIndex > maxNodeIndex) maxNodeIndex = colIndex;
|
---|
54 | }
|
---|
55 | colIndex++;
|
---|
56 | }
|
---|
57 | nodes[svmProblemRowIndex++] = tempRow.ToArray();
|
---|
58 | }
|
---|
59 |
|
---|
60 | return new svm_problem() { l = targetVector.Length, y = targetVector, x = nodes };
|
---|
61 | }
|
---|
62 | }
|
---|
63 | }
|
---|