1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 | using LibSVM;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
35 | /// <summary>
|
---|
36 | /// Support vector machine classification data analysis algorithm.
|
---|
37 | /// </summary>
|
---|
38 | [Item("Support Vector Classification", "Support vector machine classification data analysis algorithm (wrapper for libSVM).")]
|
---|
39 | [Creatable("Data Analysis")]
|
---|
40 | [StorableClass]
|
---|
41 | public sealed class SupportVectorClassification : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
42 | private const string SvmTypeParameterName = "SvmType";
|
---|
43 | private const string KernelTypeParameterName = "KernelType";
|
---|
44 | private const string CostParameterName = "Cost";
|
---|
45 | private const string NuParameterName = "Nu";
|
---|
46 | private const string GammaParameterName = "Gamma";
|
---|
47 | private const string DegreeParameterName = "Degree";
|
---|
48 |
|
---|
49 | #region parameter properties
|
---|
50 | public IConstrainedValueParameter<StringValue> SvmTypeParameter {
|
---|
51 | get { return (IConstrainedValueParameter<StringValue>)Parameters[SvmTypeParameterName]; }
|
---|
52 | }
|
---|
53 | public IConstrainedValueParameter<StringValue> KernelTypeParameter {
|
---|
54 | get { return (IConstrainedValueParameter<StringValue>)Parameters[KernelTypeParameterName]; }
|
---|
55 | }
|
---|
56 | public IValueParameter<DoubleValue> NuParameter {
|
---|
57 | get { return (IValueParameter<DoubleValue>)Parameters[NuParameterName]; }
|
---|
58 | }
|
---|
59 | public IValueParameter<DoubleValue> CostParameter {
|
---|
60 | get { return (IValueParameter<DoubleValue>)Parameters[CostParameterName]; }
|
---|
61 | }
|
---|
62 | public IValueParameter<DoubleValue> GammaParameter {
|
---|
63 | get { return (IValueParameter<DoubleValue>)Parameters[GammaParameterName]; }
|
---|
64 | }
|
---|
65 | public IValueParameter<IntValue> DegreeParameter {
|
---|
66 | get { return (IValueParameter<IntValue>)Parameters[DegreeParameterName]; }
|
---|
67 | }
|
---|
68 | #endregion
|
---|
69 | #region properties
|
---|
70 | public StringValue SvmType {
|
---|
71 | get { return SvmTypeParameter.Value; }
|
---|
72 | set { SvmTypeParameter.Value = value; }
|
---|
73 | }
|
---|
74 | public StringValue KernelType {
|
---|
75 | get { return KernelTypeParameter.Value; }
|
---|
76 | set { KernelTypeParameter.Value = value; }
|
---|
77 | }
|
---|
78 | public DoubleValue Nu {
|
---|
79 | get { return NuParameter.Value; }
|
---|
80 | }
|
---|
81 | public DoubleValue Cost {
|
---|
82 | get { return CostParameter.Value; }
|
---|
83 | }
|
---|
84 | public DoubleValue Gamma {
|
---|
85 | get { return GammaParameter.Value; }
|
---|
86 | }
|
---|
87 | public IntValue Degree {
|
---|
88 | get { return DegreeParameter.Value; }
|
---|
89 | }
|
---|
90 | #endregion
|
---|
91 | [StorableConstructor]
|
---|
92 | private SupportVectorClassification(bool deserializing) : base(deserializing) { }
|
---|
93 | private SupportVectorClassification(SupportVectorClassification original, Cloner cloner)
|
---|
94 | : base(original, cloner) {
|
---|
95 | }
|
---|
96 | public SupportVectorClassification()
|
---|
97 | : base() {
|
---|
98 | Problem = new ClassificationProblem();
|
---|
99 |
|
---|
100 | List<StringValue> svrTypes = (from type in new List<string> { "NU_SVC", "C_SVC" }
|
---|
101 | select new StringValue(type).AsReadOnly())
|
---|
102 | .ToList();
|
---|
103 | ItemSet<StringValue> svrTypeSet = new ItemSet<StringValue>(svrTypes);
|
---|
104 | List<StringValue> kernelTypes = (from type in new List<string> { "LINEAR", "POLY", "SIGMOID", "RBF" }
|
---|
105 | select new StringValue(type).AsReadOnly())
|
---|
106 | .ToList();
|
---|
107 | ItemSet<StringValue> kernelTypeSet = new ItemSet<StringValue>(kernelTypes);
|
---|
108 | Parameters.Add(new ConstrainedValueParameter<StringValue>(SvmTypeParameterName, "The type of SVM to use.", svrTypeSet, svrTypes[0]));
|
---|
109 | Parameters.Add(new ConstrainedValueParameter<StringValue>(KernelTypeParameterName, "The kernel type to use for the SVM.", kernelTypeSet, kernelTypes[3]));
|
---|
110 | Parameters.Add(new ValueParameter<DoubleValue>(NuParameterName, "The value of the nu parameter nu-SVC.", new DoubleValue(0.5)));
|
---|
111 | Parameters.Add(new ValueParameter<DoubleValue>(CostParameterName, "The value of the C (cost) parameter of C-SVC.", new DoubleValue(1.0)));
|
---|
112 | Parameters.Add(new ValueParameter<DoubleValue>(GammaParameterName, "The value of the gamma parameter in the kernel function.", new DoubleValue(1.0)));
|
---|
113 | Parameters.Add(new ValueParameter<IntValue>(DegreeParameterName, "The degree parameter for the polynomial kernel function.", new IntValue(3)));
|
---|
114 | }
|
---|
115 | [StorableHook(HookType.AfterDeserialization)]
|
---|
116 | private void AfterDeserialization() {
|
---|
117 | #region backwards compatibility (change with 3.4)
|
---|
118 | if (!Parameters.ContainsKey(DegreeParameterName))
|
---|
119 | Parameters.Add(new ValueParameter<IntValue>(DegreeParameterName, "The degree parameter for the polynomial kernel function.", new IntValue(3)));
|
---|
120 | #endregion
|
---|
121 | }
|
---|
122 |
|
---|
123 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
124 | return new SupportVectorClassification(this, cloner);
|
---|
125 | }
|
---|
126 |
|
---|
127 | #region support vector classification
|
---|
128 | protected override void Run() {
|
---|
129 | IClassificationProblemData problemData = Problem.ProblemData;
|
---|
130 | IEnumerable<string> selectedInputVariables = problemData.AllowedInputVariables;
|
---|
131 | double trainingAccuracy, testAccuracy;
|
---|
132 | int nSv;
|
---|
133 | var solution = CreateSupportVectorClassificationSolution(problemData, selectedInputVariables,
|
---|
134 | SvmType.Value, KernelType.Value, Cost.Value, Nu.Value, Gamma.Value, Degree.Value,
|
---|
135 | out trainingAccuracy, out testAccuracy, out nSv);
|
---|
136 |
|
---|
137 | Results.Add(new Result("Support vector classification solution", "The support vector classification solution.", solution));
|
---|
138 | Results.Add(new Result("Training accuracy", "The accuracy of the SVR solution on the training partition.", new DoubleValue(trainingAccuracy)));
|
---|
139 | Results.Add(new Result("Test accuracy", "The accuracy of the SVR solution on the test partition.", new DoubleValue(testAccuracy)));
|
---|
140 | Results.Add(new Result("Number of support vectors", "The number of support vectors of the SVR solution.", new IntValue(nSv)));
|
---|
141 | }
|
---|
142 |
|
---|
143 | public static SupportVectorClassificationSolution CreateSupportVectorClassificationSolution(IClassificationProblemData problemData, IEnumerable<string> allowedInputVariables,
|
---|
144 | string svmType, string kernelType, double cost, double nu, double gamma, int degree, out double trainingAccuracy, out double testAccuracy, out int nSv) {
|
---|
145 | return CreateSupportVectorClassificationSolution(problemData, allowedInputVariables, GetSvmType(svmType), GetKernelType(kernelType), cost, nu, gamma, degree,
|
---|
146 | out trainingAccuracy, out testAccuracy, out nSv);
|
---|
147 | }
|
---|
148 |
|
---|
149 | public static SupportVectorClassificationSolution CreateSupportVectorClassificationSolution(IClassificationProblemData problemData, IEnumerable<string> allowedInputVariables,
|
---|
150 | int svmType, int kernelType, double cost, double nu, double gamma, int degree, out double trainingAccuracy, out double testAccuracy, out int nSv) {
|
---|
151 | Dataset dataset = problemData.Dataset;
|
---|
152 | string targetVariable = problemData.TargetVariable;
|
---|
153 | IEnumerable<int> rows = problemData.TrainingIndices;
|
---|
154 |
|
---|
155 | //extract SVM parameters from scope and set them
|
---|
156 | svm_parameter parameter = new svm_parameter();
|
---|
157 | parameter.svm_type = svmType;
|
---|
158 | parameter.kernel_type = kernelType;
|
---|
159 | parameter.C = cost;
|
---|
160 | parameter.nu = nu;
|
---|
161 | parameter.gamma = gamma;
|
---|
162 | parameter.cache_size = 500;
|
---|
163 | parameter.probability = 0;
|
---|
164 | parameter.eps = 0.001;
|
---|
165 | parameter.degree = degree;
|
---|
166 | parameter.shrinking = 1;
|
---|
167 | parameter.coef0 = 0;
|
---|
168 |
|
---|
169 | var weightLabels = new List<int>();
|
---|
170 | var weights = new List<double>();
|
---|
171 | foreach (double c in problemData.ClassValues) {
|
---|
172 | double wSum = 0.0;
|
---|
173 | foreach (double otherClass in problemData.ClassValues) {
|
---|
174 | if (!c.IsAlmost(otherClass)) {
|
---|
175 | wSum += problemData.GetClassificationPenalty(c, otherClass);
|
---|
176 | }
|
---|
177 | }
|
---|
178 | weightLabels.Add((int)c);
|
---|
179 | weights.Add(wSum);
|
---|
180 | }
|
---|
181 | parameter.weight_label = weightLabels.ToArray();
|
---|
182 | parameter.weight = weights.ToArray();
|
---|
183 |
|
---|
184 |
|
---|
185 | svm_problem problem = SupportVectorMachineUtil.CreateSvmProblem(dataset, targetVariable, allowedInputVariables, rows);
|
---|
186 | RangeTransform rangeTransform = RangeTransform.Compute(problem);
|
---|
187 | svm_problem scaledProblem = rangeTransform.Scale(problem);
|
---|
188 | var svmModel = svm.svm_train(scaledProblem, parameter);
|
---|
189 | var model = new SupportVectorMachineModel(svmModel, rangeTransform, targetVariable, allowedInputVariables, problemData.ClassValues);
|
---|
190 | var solution = new SupportVectorClassificationSolution(model, (IClassificationProblemData)problemData.Clone());
|
---|
191 |
|
---|
192 | nSv = svmModel.SV.Length;
|
---|
193 | trainingAccuracy = solution.TrainingAccuracy;
|
---|
194 | testAccuracy = solution.TestAccuracy;
|
---|
195 |
|
---|
196 | return solution;
|
---|
197 | }
|
---|
198 |
|
---|
199 | private static int GetSvmType(string svmType) {
|
---|
200 | if (svmType == "NU_SVC") return svm_parameter.NU_SVC;
|
---|
201 | if (svmType == "C_SVC") return svm_parameter.C_SVC;
|
---|
202 | throw new ArgumentException("Unknown SVM type");
|
---|
203 | }
|
---|
204 |
|
---|
205 | private static int GetKernelType(string kernelType) {
|
---|
206 | if (kernelType == "LINEAR") return svm_parameter.LINEAR;
|
---|
207 | if (kernelType == "POLY") return svm_parameter.POLY;
|
---|
208 | if (kernelType == "SIGMOID") return svm_parameter.SIGMOID;
|
---|
209 | if (kernelType == "RBF") return svm_parameter.RBF;
|
---|
210 | throw new ArgumentException("Unknown kernel type");
|
---|
211 | }
|
---|
212 | #endregion
|
---|
213 | }
|
---|
214 | }
|
---|