1 | #region License Information
|
---|
2 |
|
---|
3 | /* HeuristicLab
|
---|
4 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #endregion
|
---|
23 |
|
---|
24 | using System;
|
---|
25 | using System.Collections.Generic;
|
---|
26 | using System.Linq;
|
---|
27 | using System.Linq.Expressions;
|
---|
28 | using System.Threading.Tasks;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Core;
|
---|
31 | using HeuristicLab.Data;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis;
|
---|
35 | using HeuristicLab.Random;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
38 | [Item("RFParameter", "A random forest parameter collection")]
|
---|
39 | [StorableClass]
|
---|
40 | public class RFParameter : ParameterCollection {
|
---|
41 | public RFParameter() {
|
---|
42 | base.Add(new FixedValueParameter<IntValue>("N", "The number of random forest trees", new IntValue(50)));
|
---|
43 | base.Add(new FixedValueParameter<DoubleValue>("M", "The ratio of features that will be used in the construction of individual trees (0<m<=1)", new DoubleValue(0.1)));
|
---|
44 | base.Add(new FixedValueParameter<DoubleValue>("R", "The ratio of the training set that will be used in the construction of individual trees (0<r<=1)", new DoubleValue(0.1)));
|
---|
45 | }
|
---|
46 |
|
---|
47 | [StorableConstructor]
|
---|
48 | protected RFParameter(bool deserializing)
|
---|
49 | : base(deserializing) {
|
---|
50 | }
|
---|
51 |
|
---|
52 | protected RFParameter(RFParameter original, Cloner cloner)
|
---|
53 | : base(original, cloner) {
|
---|
54 | this.N = original.N;
|
---|
55 | this.R = original.R;
|
---|
56 | this.M = original.M;
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
60 | return new RFParameter(this, cloner);
|
---|
61 | }
|
---|
62 |
|
---|
63 | private IFixedValueParameter<IntValue> NParameter {
|
---|
64 | get { return (IFixedValueParameter<IntValue>)base["N"]; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | private IFixedValueParameter<DoubleValue> RParameter {
|
---|
68 | get { return (IFixedValueParameter<DoubleValue>)base["R"]; }
|
---|
69 | }
|
---|
70 |
|
---|
71 | private IFixedValueParameter<DoubleValue> MParameter {
|
---|
72 | get { return (IFixedValueParameter<DoubleValue>)base["M"]; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | public int N {
|
---|
76 | get { return NParameter.Value.Value; }
|
---|
77 | set { NParameter.Value.Value = value; }
|
---|
78 | }
|
---|
79 |
|
---|
80 | public double R {
|
---|
81 | get { return RParameter.Value.Value; }
|
---|
82 | set { RParameter.Value.Value = value; }
|
---|
83 | }
|
---|
84 |
|
---|
85 | public double M {
|
---|
86 | get { return MParameter.Value.Value; }
|
---|
87 | set { MParameter.Value.Value = value; }
|
---|
88 | }
|
---|
89 | }
|
---|
90 |
|
---|
91 | public static class RandomForestUtil {
|
---|
92 | private static readonly object locker = new object();
|
---|
93 |
|
---|
94 | private static void CrossValidate(IRegressionProblemData problemData, Tuple<IEnumerable<int>, IEnumerable<int>>[] partitions, int nTrees, double r, double m, int seed, out double avgTestMse) {
|
---|
95 | avgTestMse = 0;
|
---|
96 | var ds = problemData.Dataset;
|
---|
97 | var targetVariable = GetTargetVariableName(problemData);
|
---|
98 | foreach (var tuple in partitions) {
|
---|
99 | double rmsError, avgRelError, outOfBagAvgRelError, outOfBagRmsError;
|
---|
100 | var trainingRandomForestPartition = tuple.Item1;
|
---|
101 | var testRandomForestPartition = tuple.Item2;
|
---|
102 | var model = RandomForestModel.CreateRegressionModel(problemData, trainingRandomForestPartition, nTrees, r, m, seed, out rmsError, out avgRelError, out outOfBagRmsError, out outOfBagAvgRelError);
|
---|
103 | var estimatedValues = model.GetEstimatedValues(ds, testRandomForestPartition);
|
---|
104 | var targetValues = ds.GetDoubleValues(targetVariable, testRandomForestPartition);
|
---|
105 | OnlineCalculatorError calculatorError;
|
---|
106 | double mse = OnlineMeanSquaredErrorCalculator.Calculate(estimatedValues, targetValues, out calculatorError);
|
---|
107 | if (calculatorError != OnlineCalculatorError.None)
|
---|
108 | mse = double.NaN;
|
---|
109 | avgTestMse += mse;
|
---|
110 | }
|
---|
111 | avgTestMse /= partitions.Length;
|
---|
112 | }
|
---|
113 |
|
---|
114 | private static void CrossValidate(IClassificationProblemData problemData, Tuple<IEnumerable<int>, IEnumerable<int>>[] partitions, int nTrees, double r, double m, int seed, out double avgTestAccuracy) {
|
---|
115 | avgTestAccuracy = 0;
|
---|
116 | var ds = problemData.Dataset;
|
---|
117 | var targetVariable = GetTargetVariableName(problemData);
|
---|
118 | foreach (var tuple in partitions) {
|
---|
119 | double rmsError, avgRelError, outOfBagAvgRelError, outOfBagRmsError;
|
---|
120 | var trainingRandomForestPartition = tuple.Item1;
|
---|
121 | var testRandomForestPartition = tuple.Item2;
|
---|
122 | var model = RandomForestModel.CreateClassificationModel(problemData, trainingRandomForestPartition, nTrees, r, m, seed, out rmsError, out avgRelError, out outOfBagRmsError, out outOfBagAvgRelError);
|
---|
123 | var estimatedValues = model.GetEstimatedClassValues(ds, testRandomForestPartition);
|
---|
124 | var targetValues = ds.GetDoubleValues(targetVariable, testRandomForestPartition);
|
---|
125 | OnlineCalculatorError calculatorError;
|
---|
126 | double accuracy = OnlineAccuracyCalculator.Calculate(estimatedValues, targetValues, out calculatorError);
|
---|
127 | if (calculatorError != OnlineCalculatorError.None)
|
---|
128 | accuracy = double.NaN;
|
---|
129 | avgTestAccuracy += accuracy;
|
---|
130 | }
|
---|
131 | avgTestAccuracy /= partitions.Length;
|
---|
132 | }
|
---|
133 |
|
---|
134 | // grid search without cross-validation since in the case of random forests, the out-of-bag estimate is unbiased
|
---|
135 | public static RFParameter GridSearch(IRegressionProblemData problemData, Dictionary<string, IEnumerable<double>> parameterRanges, int seed = 12345, int maxDegreeOfParallelism = 1) {
|
---|
136 | var setters = parameterRanges.Keys.Select(GenerateSetter).ToList();
|
---|
137 | var crossProduct = parameterRanges.Values.CartesianProduct();
|
---|
138 | double bestOutOfBagRmsError = double.MaxValue;
|
---|
139 | RFParameter bestParameters = new RFParameter();
|
---|
140 |
|
---|
141 | Parallel.ForEach(crossProduct, new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism }, parameterCombination => {
|
---|
142 | var parameterValues = parameterCombination.ToList();
|
---|
143 | var parameters = new RFParameter();
|
---|
144 | for (int i = 0; i < setters.Count; ++i) { setters[i](parameters, parameterValues[i]); }
|
---|
145 | double rmsError, outOfBagRmsError, avgRelError, outOfBagAvgRelError;
|
---|
146 | RandomForestModel.CreateRegressionModel(problemData, problemData.TrainingIndices, parameters.N, parameters.R, parameters.M, seed, out rmsError, out outOfBagRmsError, out avgRelError, out outOfBagAvgRelError);
|
---|
147 |
|
---|
148 | lock (locker) {
|
---|
149 | if (bestOutOfBagRmsError > outOfBagRmsError) {
|
---|
150 | bestOutOfBagRmsError = outOfBagRmsError;
|
---|
151 | bestParameters = (RFParameter)parameters.Clone();
|
---|
152 | }
|
---|
153 | }
|
---|
154 | });
|
---|
155 | return bestParameters;
|
---|
156 | }
|
---|
157 |
|
---|
158 | public static RFParameter GridSearch(IClassificationProblemData problemData, Dictionary<string, IEnumerable<double>> parameterRanges, int seed = 12345, int maxDegreeOfParallelism = 1) {
|
---|
159 | var setters = parameterRanges.Keys.Select(GenerateSetter).ToList();
|
---|
160 | var crossProduct = parameterRanges.Values.CartesianProduct();
|
---|
161 |
|
---|
162 | double bestOutOfBagRmsError = double.MaxValue;
|
---|
163 | RFParameter bestParameters = new RFParameter();
|
---|
164 |
|
---|
165 | Parallel.ForEach(crossProduct, new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism }, parameterCombination => {
|
---|
166 | var parameterValues = parameterCombination.ToList();
|
---|
167 | var parameters = new RFParameter();
|
---|
168 | for (int i = 0; i < setters.Count; ++i) { setters[i](parameters, parameterValues[i]); }
|
---|
169 | double rmsError, outOfBagRmsError, avgRelError, outOfBagAvgRelError;
|
---|
170 | RandomForestModel.CreateClassificationModel(problemData, problemData.TrainingIndices, parameters.N, parameters.R, parameters.M, seed,
|
---|
171 | out rmsError, out outOfBagRmsError, out avgRelError, out outOfBagAvgRelError);
|
---|
172 |
|
---|
173 | lock (locker) {
|
---|
174 | if (bestOutOfBagRmsError > outOfBagRmsError) {
|
---|
175 | bestOutOfBagRmsError = outOfBagRmsError;
|
---|
176 | bestParameters = (RFParameter)parameters.Clone();
|
---|
177 | }
|
---|
178 | }
|
---|
179 | });
|
---|
180 | return bestParameters;
|
---|
181 | }
|
---|
182 |
|
---|
183 | public static RFParameter GridSearch(IRegressionProblemData problemData, int numberOfFolds, bool shuffleFolds, Dictionary<string, IEnumerable<double>> parameterRanges, int seed = 12345, int maxDegreeOfParallelism = 1) {
|
---|
184 | DoubleValue mse = new DoubleValue(Double.MaxValue);
|
---|
185 | RFParameter bestParameter = new RFParameter();
|
---|
186 |
|
---|
187 | var setters = parameterRanges.Keys.Select(GenerateSetter).ToList();
|
---|
188 | var partitions = GenerateRandomForestPartitions(problemData, numberOfFolds);
|
---|
189 | var crossProduct = parameterRanges.Values.CartesianProduct();
|
---|
190 |
|
---|
191 | Parallel.ForEach(crossProduct, new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism }, parameterCombination => {
|
---|
192 | var parameterValues = parameterCombination.ToList();
|
---|
193 | double testMSE;
|
---|
194 | var parameters = new RFParameter();
|
---|
195 | for (int i = 0; i < setters.Count; ++i) {
|
---|
196 | setters[i](parameters, parameterValues[i]);
|
---|
197 | }
|
---|
198 | CrossValidate(problemData, partitions, parameters.N, parameters.R, parameters.M, seed, out testMSE);
|
---|
199 |
|
---|
200 | lock (locker) {
|
---|
201 | if (testMSE < mse.Value) {
|
---|
202 | mse.Value = testMSE;
|
---|
203 | bestParameter = (RFParameter)parameters.Clone();
|
---|
204 | }
|
---|
205 | }
|
---|
206 | });
|
---|
207 | return bestParameter;
|
---|
208 | }
|
---|
209 |
|
---|
210 | public static RFParameter GridSearch(IClassificationProblemData problemData, int numberOfFolds, bool shuffleFolds, Dictionary<string, IEnumerable<double>> parameterRanges, int seed = 12345, int maxDegreeOfParallelism = 1) {
|
---|
211 | DoubleValue accuracy = new DoubleValue(0);
|
---|
212 | RFParameter bestParameter = new RFParameter();
|
---|
213 |
|
---|
214 | var setters = parameterRanges.Keys.Select(GenerateSetter).ToList();
|
---|
215 | var crossProduct = parameterRanges.Values.CartesianProduct();
|
---|
216 | var partitions = GenerateRandomForestPartitions(problemData, numberOfFolds, shuffleFolds);
|
---|
217 |
|
---|
218 | Parallel.ForEach(crossProduct, new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism }, parameterCombination => {
|
---|
219 | var parameterValues = parameterCombination.ToList();
|
---|
220 | double testAccuracy;
|
---|
221 | var parameters = new RFParameter();
|
---|
222 | for (int i = 0; i < setters.Count; ++i) {
|
---|
223 | setters[i](parameters, parameterValues[i]);
|
---|
224 | }
|
---|
225 | CrossValidate(problemData, partitions, parameters.N, parameters.R, parameters.M, seed, out testAccuracy);
|
---|
226 |
|
---|
227 | lock (locker) {
|
---|
228 | if (testAccuracy > accuracy.Value) {
|
---|
229 | accuracy.Value = testAccuracy;
|
---|
230 | bestParameter = (RFParameter)parameters.Clone();
|
---|
231 | }
|
---|
232 | }
|
---|
233 | });
|
---|
234 | return bestParameter;
|
---|
235 | }
|
---|
236 |
|
---|
237 | private static Tuple<IEnumerable<int>, IEnumerable<int>>[] GenerateRandomForestPartitions(IDataAnalysisProblemData problemData, int numberOfFolds, bool shuffleFolds = false) {
|
---|
238 | var folds = GenerateFolds(problemData, numberOfFolds, shuffleFolds).ToList();
|
---|
239 | var partitions = new Tuple<IEnumerable<int>, IEnumerable<int>>[numberOfFolds];
|
---|
240 |
|
---|
241 | for (int i = 0; i < numberOfFolds; ++i) {
|
---|
242 | int p = i; // avoid "access to modified closure" warning
|
---|
243 | var trainingRows = folds.SelectMany((par, j) => j != p ? par : Enumerable.Empty<int>());
|
---|
244 | var testRows = folds[i];
|
---|
245 | partitions[i] = new Tuple<IEnumerable<int>, IEnumerable<int>>(trainingRows, testRows);
|
---|
246 | }
|
---|
247 | return partitions;
|
---|
248 | }
|
---|
249 |
|
---|
250 | public static IEnumerable<IEnumerable<int>> GenerateFolds(IDataAnalysisProblemData problemData, int numberOfFolds, bool shuffleFolds = false) {
|
---|
251 | var random = new MersenneTwister((uint)Environment.TickCount);
|
---|
252 | if (problemData is IRegressionProblemData) {
|
---|
253 | var trainingIndices = shuffleFolds ? problemData.TrainingIndices.OrderBy(x => random.Next()) : problemData.TrainingIndices;
|
---|
254 | return GenerateFolds(trainingIndices, problemData.TrainingPartition.Size, numberOfFolds);
|
---|
255 | }
|
---|
256 | if (problemData is IClassificationProblemData) {
|
---|
257 | // when shuffle is enabled do stratified folds generation, some folds may have zero elements
|
---|
258 | // otherwise, generate folds normally
|
---|
259 | return shuffleFolds ? GenerateFoldsStratified(problemData as IClassificationProblemData, numberOfFolds, random) : GenerateFolds(problemData.TrainingIndices, problemData.TrainingPartition.Size, numberOfFolds);
|
---|
260 | }
|
---|
261 | throw new ArgumentException("Problem data is neither regression or classification problem data.");
|
---|
262 | }
|
---|
263 |
|
---|
264 | /// <summary>
|
---|
265 | /// Stratified fold generation from classification data. Stratification means that we ensure the same distribution of class labels for each fold.
|
---|
266 | /// The samples are grouped by class label and each group is split into @numberOfFolds parts. The final folds are formed from the joining of
|
---|
267 | /// the corresponding parts from each class label.
|
---|
268 | /// </summary>
|
---|
269 | /// <param name="problemData">The classification problem data.</param>
|
---|
270 | /// <param name="numberOfFolds">The number of folds in which to split the data.</param>
|
---|
271 | /// <param name="random">The random generator used to shuffle the folds.</param>
|
---|
272 | /// <returns>An enumerable sequece of folds, where a fold is represented by a sequence of row indices.</returns>
|
---|
273 | private static IEnumerable<IEnumerable<int>> GenerateFoldsStratified(IClassificationProblemData problemData, int numberOfFolds, IRandom random) {
|
---|
274 | var values = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
|
---|
275 | var valuesIndices = problemData.TrainingIndices.Zip(values, (i, v) => new { Index = i, Value = v }).ToList();
|
---|
276 | IEnumerable<IEnumerable<IEnumerable<int>>> foldsByClass = valuesIndices.GroupBy(x => x.Value, x => x.Index).Select(g => GenerateFolds(g, g.Count(), numberOfFolds));
|
---|
277 | var enumerators = foldsByClass.Select(f => f.GetEnumerator()).ToList();
|
---|
278 | while (enumerators.All(e => e.MoveNext())) {
|
---|
279 | yield return enumerators.SelectMany(e => e.Current).OrderBy(x => random.Next()).ToList();
|
---|
280 | }
|
---|
281 | }
|
---|
282 |
|
---|
283 | private static IEnumerable<IEnumerable<T>> GenerateFolds<T>(IEnumerable<T> values, int valuesCount, int numberOfFolds) {
|
---|
284 | // if number of folds is greater than the number of values, some empty folds will be returned
|
---|
285 | if (valuesCount < numberOfFolds) {
|
---|
286 | for (int i = 0; i < numberOfFolds; ++i)
|
---|
287 | yield return i < valuesCount ? values.Skip(i).Take(1) : Enumerable.Empty<T>();
|
---|
288 | } else {
|
---|
289 | int f = valuesCount / numberOfFolds, r = valuesCount % numberOfFolds; // number of folds rounded to integer and remainder
|
---|
290 | int start = 0, end = f;
|
---|
291 | for (int i = 0; i < numberOfFolds; ++i) {
|
---|
292 | if (r > 0) {
|
---|
293 | ++end;
|
---|
294 | --r;
|
---|
295 | }
|
---|
296 | yield return values.Skip(start).Take(end - start);
|
---|
297 | start = end;
|
---|
298 | end += f;
|
---|
299 | }
|
---|
300 | }
|
---|
301 | }
|
---|
302 |
|
---|
303 | private static Action<RFParameter, double> GenerateSetter(string field) {
|
---|
304 | var targetExp = Expression.Parameter(typeof(RFParameter));
|
---|
305 | var valueExp = Expression.Parameter(typeof(double));
|
---|
306 | var fieldExp = Expression.Property(targetExp, field);
|
---|
307 | var assignExp = Expression.Assign(fieldExp, Expression.Convert(valueExp, fieldExp.Type));
|
---|
308 | var setter = Expression.Lambda<Action<RFParameter, double>>(assignExp, targetExp, valueExp).Compile();
|
---|
309 | return setter;
|
---|
310 | }
|
---|
311 |
|
---|
312 | private static string GetTargetVariableName(IDataAnalysisProblemData problemData) {
|
---|
313 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
314 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
315 |
|
---|
316 | if (regressionProblemData != null)
|
---|
317 | return regressionProblemData.TargetVariable;
|
---|
318 | if (classificationProblemData != null)
|
---|
319 | return classificationProblemData.TargetVariable;
|
---|
320 |
|
---|
321 | throw new ArgumentException("Problem data is neither regression or classification problem data.");
|
---|
322 | }
|
---|
323 | }
|
---|
324 | }
|
---|