1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HEAL.Attic;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
33 | [StorableType("9C797DF0-1169-4381-A732-6DAB90802839")]
|
---|
34 | [Item("RandomForestModelFull", "Represents a random forest for regression and classification.")]
|
---|
35 | public sealed class RandomForestModelFull : ClassificationModel, IRandomForestModel {
|
---|
36 |
|
---|
37 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
38 | get { return inputVariables; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | [Storable]
|
---|
42 | private double[] classValues;
|
---|
43 |
|
---|
44 | [Storable]
|
---|
45 | private string[] inputVariables;
|
---|
46 |
|
---|
47 | public int NumberOfTrees {
|
---|
48 | get { return RandomForestNTrees; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | // not persisted
|
---|
52 | private alglib.decisionforest randomForest;
|
---|
53 |
|
---|
54 | [Storable]
|
---|
55 | private int RandomForestBufSize {
|
---|
56 | get { return randomForest.innerobj.bufsize; }
|
---|
57 | set { randomForest.innerobj.bufsize = value; }
|
---|
58 | }
|
---|
59 | [Storable]
|
---|
60 | private int RandomForestNClasses {
|
---|
61 | get { return randomForest.innerobj.nclasses; }
|
---|
62 | set { randomForest.innerobj.nclasses = value; }
|
---|
63 | }
|
---|
64 | [Storable]
|
---|
65 | private int RandomForestNTrees {
|
---|
66 | get { return randomForest.innerobj.ntrees; }
|
---|
67 | set { randomForest.innerobj.ntrees = value; }
|
---|
68 | }
|
---|
69 | [Storable]
|
---|
70 | private int RandomForestNVars {
|
---|
71 | get { return randomForest.innerobj.nvars; }
|
---|
72 | set { randomForest.innerobj.nvars = value; }
|
---|
73 | }
|
---|
74 | [Storable]
|
---|
75 | private double[] RandomForestTrees {
|
---|
76 | get { return randomForest.innerobj.trees; }
|
---|
77 | set { randomForest.innerobj.trees = value; }
|
---|
78 | }
|
---|
79 |
|
---|
80 | [StorableConstructor]
|
---|
81 | private RandomForestModelFull(StorableConstructorFlag _) : base(_) {
|
---|
82 | randomForest = new alglib.decisionforest();
|
---|
83 | }
|
---|
84 |
|
---|
85 | private RandomForestModelFull(RandomForestModelFull original, Cloner cloner) : base(original, cloner) {
|
---|
86 | randomForest = new alglib.decisionforest();
|
---|
87 | randomForest.innerobj.bufsize = original.randomForest.innerobj.bufsize;
|
---|
88 | randomForest.innerobj.nclasses = original.randomForest.innerobj.nclasses;
|
---|
89 | randomForest.innerobj.ntrees = original.randomForest.innerobj.ntrees;
|
---|
90 | randomForest.innerobj.nvars = original.randomForest.innerobj.nvars;
|
---|
91 | randomForest.innerobj.trees = (double[])original.randomForest.innerobj.trees.Clone();
|
---|
92 |
|
---|
93 | // following fields are immutable so we don't need to clone them
|
---|
94 | inputVariables = original.inputVariables;
|
---|
95 | classValues = original.classValues;
|
---|
96 | }
|
---|
97 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
98 | return new RandomForestModelFull(this, cloner);
|
---|
99 | }
|
---|
100 |
|
---|
101 | public RandomForestModelFull(alglib.decisionforest decisionForest, string targetVariable, IEnumerable<string> inputVariables, IEnumerable<double> classValues = null) : base(targetVariable) {
|
---|
102 | this.name = ItemName;
|
---|
103 | this.description = ItemDescription;
|
---|
104 |
|
---|
105 | randomForest = decisionForest;
|
---|
106 |
|
---|
107 | this.inputVariables = inputVariables.ToArray();
|
---|
108 |
|
---|
109 | //classValues are only use for classification models
|
---|
110 | if (classValues == null) this.classValues = new double[0];
|
---|
111 | else this.classValues = classValues.ToArray();
|
---|
112 | }
|
---|
113 |
|
---|
114 |
|
---|
115 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
116 | return new RandomForestRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
117 | }
|
---|
118 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
119 | return new RandomForestClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
120 | }
|
---|
121 |
|
---|
122 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
123 | return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
124 | }
|
---|
125 |
|
---|
126 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
127 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
128 |
|
---|
129 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
130 | if (regressionProblemData != null)
|
---|
131 | return IsProblemDataCompatible(regressionProblemData, out errorMessage);
|
---|
132 |
|
---|
133 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
134 | if (classificationProblemData != null)
|
---|
135 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
136 |
|
---|
137 | throw new ArgumentException("The problem data is not compatible with this random forest. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
138 | }
|
---|
139 |
|
---|
140 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
141 | double[,] inputData = dataset.ToArray(inputVariables, rows);
|
---|
142 | RandomForestUtil.AssertInputMatrix(inputData);
|
---|
143 |
|
---|
144 | int n = inputData.GetLength(0);
|
---|
145 | int columns = inputData.GetLength(1);
|
---|
146 | double[] x = new double[columns];
|
---|
147 | double[] y = new double[1];
|
---|
148 |
|
---|
149 | for (int row = 0; row < n; row++) {
|
---|
150 | for (int column = 0; column < columns; column++) {
|
---|
151 | x[column] = inputData[row, column];
|
---|
152 | }
|
---|
153 | alglib.dfprocess(randomForest, x, ref y);
|
---|
154 | yield return y[0];
|
---|
155 | }
|
---|
156 | }
|
---|
157 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
158 | double[,] inputData = dataset.ToArray(inputVariables, rows);
|
---|
159 | RandomForestUtil.AssertInputMatrix(inputData);
|
---|
160 |
|
---|
161 | int n = inputData.GetLength(0);
|
---|
162 | int columns = inputData.GetLength(1);
|
---|
163 | double[] x = new double[columns];
|
---|
164 | double[] ys = new double[this.randomForest.innerobj.ntrees];
|
---|
165 |
|
---|
166 | for (int row = 0; row < n; row++) {
|
---|
167 | for (int column = 0; column < columns; column++) {
|
---|
168 | x[column] = inputData[row, column];
|
---|
169 | }
|
---|
170 | alglib.dforest.dfprocessraw(randomForest.innerobj, x, ref ys);
|
---|
171 | yield return ys.VariancePop();
|
---|
172 | }
|
---|
173 | }
|
---|
174 |
|
---|
175 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
176 | double[,] inputData = dataset.ToArray(inputVariables, rows);
|
---|
177 | RandomForestUtil.AssertInputMatrix(inputData);
|
---|
178 |
|
---|
179 | int n = inputData.GetLength(0);
|
---|
180 | int columns = inputData.GetLength(1);
|
---|
181 | double[] x = new double[columns];
|
---|
182 | double[] y = new double[randomForest.innerobj.nclasses];
|
---|
183 |
|
---|
184 | for (int row = 0; row < n; row++) {
|
---|
185 | for (int column = 0; column < columns; column++) {
|
---|
186 | x[column] = inputData[row, column];
|
---|
187 | }
|
---|
188 | alglib.dfprocess(randomForest, x, ref y);
|
---|
189 | // find class for with the largest probability value
|
---|
190 | int maxProbClassIndex = 0;
|
---|
191 | double maxProb = y[0];
|
---|
192 | for (int i = 1; i < y.Length; i++) {
|
---|
193 | if (maxProb < y[i]) {
|
---|
194 | maxProb = y[i];
|
---|
195 | maxProbClassIndex = i;
|
---|
196 | }
|
---|
197 | }
|
---|
198 | yield return classValues[maxProbClassIndex];
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 | public ISymbolicExpressionTree ExtractTree(int treeIdx) {
|
---|
203 | var rf = randomForest;
|
---|
204 | // hoping that the internal representation of alglib is stable
|
---|
205 |
|
---|
206 | // TREE FORMAT
|
---|
207 | // W[Offs] - size of sub-array (for the tree)
|
---|
208 | // node info:
|
---|
209 | // W[K+0] - variable number (-1 for leaf mode)
|
---|
210 | // W[K+1] - threshold (class/value for leaf node)
|
---|
211 | // W[K+2] - ">=" branch index (absent for leaf node)
|
---|
212 |
|
---|
213 | // skip irrelevant trees
|
---|
214 | int offset = 0;
|
---|
215 | for (int i = 0; i < treeIdx - 1; i++) {
|
---|
216 | offset = offset + (int)Math.Round(rf.innerobj.trees[offset]);
|
---|
217 | }
|
---|
218 |
|
---|
219 | var constSy = new Constant();
|
---|
220 | var varCondSy = new VariableCondition() { IgnoreSlope = true };
|
---|
221 |
|
---|
222 | var node = CreateRegressionTreeRec(rf.innerobj.trees, offset, offset + 1, constSy, varCondSy);
|
---|
223 |
|
---|
224 | var startNode = new StartSymbol().CreateTreeNode();
|
---|
225 | startNode.AddSubtree(node);
|
---|
226 | var root = new ProgramRootSymbol().CreateTreeNode();
|
---|
227 | root.AddSubtree(startNode);
|
---|
228 | return new SymbolicExpressionTree(root);
|
---|
229 | }
|
---|
230 |
|
---|
231 | private ISymbolicExpressionTreeNode CreateRegressionTreeRec(double[] trees, int offset, int k, Constant constSy, VariableCondition varCondSy) {
|
---|
232 |
|
---|
233 | // alglib source for evaluation of one tree (dfprocessinternal)
|
---|
234 | // offs = 0
|
---|
235 | //
|
---|
236 | // Set pointer to the root
|
---|
237 | //
|
---|
238 | // k = offs + 1;
|
---|
239 | //
|
---|
240 | // //
|
---|
241 | // // Navigate through the tree
|
---|
242 | // //
|
---|
243 | // while (true) {
|
---|
244 | // if ((double)(df.trees[k]) == (double)(-1)) {
|
---|
245 | // if (df.nclasses == 1) {
|
---|
246 | // y[0] = y[0] + df.trees[k + 1];
|
---|
247 | // } else {
|
---|
248 | // idx = (int)Math.Round(df.trees[k + 1]);
|
---|
249 | // y[idx] = y[idx] + 1;
|
---|
250 | // }
|
---|
251 | // break;
|
---|
252 | // }
|
---|
253 | // if ((double)(x[(int)Math.Round(df.trees[k])]) < (double)(df.trees[k + 1])) {
|
---|
254 | // k = k + innernodewidth;
|
---|
255 | // } else {
|
---|
256 | // k = offs + (int)Math.Round(df.trees[k + 2]);
|
---|
257 | // }
|
---|
258 | // }
|
---|
259 |
|
---|
260 | if ((double)(trees[k]) == (double)(-1)) {
|
---|
261 | var constNode = (ConstantTreeNode)constSy.CreateTreeNode();
|
---|
262 | constNode.Value = trees[k + 1];
|
---|
263 | return constNode;
|
---|
264 | } else {
|
---|
265 | var condNode = (VariableConditionTreeNode)varCondSy.CreateTreeNode();
|
---|
266 | condNode.VariableName = inputVariables[(int)Math.Round(trees[k])];
|
---|
267 | condNode.Threshold = trees[k + 1];
|
---|
268 | condNode.Slope = double.PositiveInfinity;
|
---|
269 |
|
---|
270 | var left = CreateRegressionTreeRec(trees, offset, k + 3, constSy, varCondSy);
|
---|
271 | var right = CreateRegressionTreeRec(trees, offset, offset + (int)Math.Round(trees[k + 2]), constSy, varCondSy);
|
---|
272 |
|
---|
273 | condNode.AddSubtree(left); // not 100% correct because interpreter uses: if(x <= thres) left() else right() and RF uses if(x < thres) left() else right() (see above)
|
---|
274 | condNode.AddSubtree(right);
|
---|
275 | return condNode;
|
---|
276 | }
|
---|
277 | }
|
---|
278 | }
|
---|
279 | } |
---|