Free cookie consent management tool by TermsFeed Policy Generator

source: stable/HeuristicLab.Algorithms.DataAnalysis/3.4/RandomForest/RandomForestModel.cs @ 16294

Last change on this file since 16294 was 15788, checked in by gkronber, 7 years ago

#2902 merged r15783 and r15786 from trunk to stable

File size: 18.3 KB
RevLine 
[6240]1#region License Information
2/* HeuristicLab
[15584]3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[6240]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
[15127]27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[6240]28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis;
[15127]30using HeuristicLab.Problems.DataAnalysis.Symbolic;
[6240]31
32namespace HeuristicLab.Algorithms.DataAnalysis {
33  /// <summary>
[6241]34  /// Represents a random forest model for regression and classification
[6240]35  /// </summary>
36  [StorableClass]
[6241]37  [Item("RandomForestModel", "Represents a random forest for regression and classification.")]
[14027]38  public sealed class RandomForestModel : ClassificationModel, IRandomForestModel {
[11006]39    // not persisted
[6240]40    private alglib.decisionforest randomForest;
[11006]41    private alglib.decisionforest RandomForest {
42      get {
43        // recalculate lazily
44        if (randomForest.innerobj.trees == null || randomForest.innerobj.trees.Length == 0) RecalculateModel();
45        return randomForest;
[6240]46      }
47    }
48
[14027]49    public override IEnumerable<string> VariablesUsedForPrediction {
50      get { return originalTrainingData.AllowedInputVariables; }
51    }
52
[15127]53    public int NumberOfTrees {
54      get { return nTrees; }
55    }
[14027]56
[11006]57    // instead of storing the data of the model itself
58    // we instead only store data necessary to recalculate the same model lazily on demand
[6240]59    [Storable]
[11006]60    private int seed;
[6240]61    [Storable]
[11006]62    private IDataAnalysisProblemData originalTrainingData;
[6241]63    [Storable]
64    private double[] classValues;
[11006]65    [Storable]
66    private int nTrees;
67    [Storable]
68    private double r;
69    [Storable]
70    private double m;
71
[6240]72    [StorableConstructor]
[6241]73    private RandomForestModel(bool deserializing)
[6240]74      : base(deserializing) {
[11006]75      // for backwards compatibility (loading old solutions)
76      randomForest = new alglib.decisionforest();
[6240]77    }
[6241]78    private RandomForestModel(RandomForestModel original, Cloner cloner)
[6240]79      : base(original, cloner) {
80      randomForest = new alglib.decisionforest();
81      randomForest.innerobj.bufsize = original.randomForest.innerobj.bufsize;
82      randomForest.innerobj.nclasses = original.randomForest.innerobj.nclasses;
83      randomForest.innerobj.ntrees = original.randomForest.innerobj.ntrees;
84      randomForest.innerobj.nvars = original.randomForest.innerobj.nvars;
[11006]85      // we assume that the trees array (double[]) is immutable in alglib
86      randomForest.innerobj.trees = original.randomForest.innerobj.trees;
[11901]87
[11006]88      // allowedInputVariables is immutable so we don't need to clone
89      allowedInputVariables = original.allowedInputVariables;
90
91      // clone data which is necessary to rebuild the model
92      this.seed = original.seed;
93      this.originalTrainingData = cloner.Clone(original.originalTrainingData);
94      // classvalues is immutable so we don't need to clone
95      this.classValues = original.classValues;
96      this.nTrees = original.nTrees;
97      this.r = original.r;
98      this.m = original.m;
[6240]99    }
[11006]100
101    // random forest models can only be created through the static factory methods CreateRegressionModel and CreateClassificationModel
[14027]102    private RandomForestModel(string targetVariable, alglib.decisionforest randomForest,
[11006]103      int seed, IDataAnalysisProblemData originalTrainingData,
104      int nTrees, double r, double m, double[] classValues = null)
[14027]105      : base(targetVariable) {
[6240]106      this.name = ItemName;
107      this.description = ItemDescription;
[11006]108      // the model itself
[6240]109      this.randomForest = randomForest;
[11006]110      // data which is necessary for recalculation of the model
111      this.seed = seed;
112      this.originalTrainingData = (IDataAnalysisProblemData)originalTrainingData.Clone();
113      this.classValues = classValues;
114      this.nTrees = nTrees;
115      this.r = r;
116      this.m = m;
[6240]117    }
118
119    public override IDeepCloneable Clone(Cloner cloner) {
[6241]120      return new RandomForestModel(this, cloner);
[6240]121    }
122
[11006]123    private void RecalculateModel() {
124      double rmsError, oobRmsError, relClassError, oobRelClassError;
125      var regressionProblemData = originalTrainingData as IRegressionProblemData;
126      var classificationProblemData = originalTrainingData as IClassificationProblemData;
127      if (regressionProblemData != null) {
128        var model = CreateRegressionModel(regressionProblemData,
129                                              nTrees, r, m, seed, out rmsError, out oobRmsError,
130                                              out relClassError, out oobRelClassError);
131        randomForest = model.randomForest;
132      } else if (classificationProblemData != null) {
133        var model = CreateClassificationModel(classificationProblemData,
134                                              nTrees, r, m, seed, out rmsError, out oobRmsError,
135                                              out relClassError, out oobRelClassError);
136        randomForest = model.randomForest;
137      }
138    }
139
[12702]140    public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
[15142]141      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
[11006]142      AssertInputMatrix(inputData);
[6240]143
144      int n = inputData.GetLength(0);
145      int columns = inputData.GetLength(1);
146      double[] x = new double[columns];
147      double[] y = new double[1];
148
149      for (int row = 0; row < n; row++) {
150        for (int column = 0; column < columns; column++) {
151          x[column] = inputData[row, column];
152        }
[11006]153        alglib.dfprocess(RandomForest, x, ref y);
[6240]154        yield return y[0];
155      }
156    }
157
[14822]158    public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
[15142]159      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
[14822]160      AssertInputMatrix(inputData);
161
162      int n = inputData.GetLength(0);
163      int columns = inputData.GetLength(1);
164      double[] x = new double[columns];
165      double[] ys = new double[this.RandomForest.innerobj.ntrees];
166
167      for (int row = 0; row < n; row++) {
168        for (int column = 0; column < columns; column++) {
169          x[column] = inputData[row, column];
170        }
171        alglib.dforest.dfprocessraw(RandomForest.innerobj, x, ref ys);
172        yield return ys.VariancePop();
173      }
174    }
175
[14027]176    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
[15142]177      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
[11006]178      AssertInputMatrix(inputData);
[6241]179
180      int n = inputData.GetLength(0);
181      int columns = inputData.GetLength(1);
182      double[] x = new double[columns];
[11006]183      double[] y = new double[RandomForest.innerobj.nclasses];
[6241]184
185      for (int row = 0; row < n; row++) {
186        for (int column = 0; column < columns; column++) {
187          x[column] = inputData[row, column];
188        }
189        alglib.dfprocess(randomForest, x, ref y);
190        // find class for with the largest probability value
191        int maxProbClassIndex = 0;
192        double maxProb = y[0];
193        for (int i = 1; i < y.Length; i++) {
194          if (maxProb < y[i]) {
195            maxProb = y[i];
196            maxProbClassIndex = i;
197          }
198        }
199        yield return classValues[maxProbClassIndex];
200      }
201    }
202
[15127]203    public ISymbolicExpressionTree ExtractTree(int treeIdx) {
204      var rf = RandomForest;
205      // hoping that the internal representation of alglib is stable
[14027]206
[15127]207      // TREE FORMAT
208      // W[Offs]      -   size of sub-array (for the tree)
209      //     node info:
210      // W[K+0]       -   variable number        (-1 for leaf mode)
211      // W[K+1]       -   threshold              (class/value for leaf node)
212      // W[K+2]       -   ">=" branch index      (absent for leaf node)
213
214      // skip irrelevant trees
215      int offset = 0;
216      for (int i = 0; i < treeIdx - 1; i++) {
217        offset = offset + (int)Math.Round(rf.innerobj.trees[offset]);
218      }
219
220      var constSy = new Constant();
221      var varCondSy = new VariableCondition() { IgnoreSlope = true };
222
223      var node = CreateRegressionTreeRec(rf.innerobj.trees, offset, offset + 1, constSy, varCondSy);
224
225      var startNode = new StartSymbol().CreateTreeNode();
226      startNode.AddSubtree(node);
227      var root = new ProgramRootSymbol().CreateTreeNode();
228      root.AddSubtree(startNode);
229      return new SymbolicExpressionTree(root);
230    }
231
232    private ISymbolicExpressionTreeNode CreateRegressionTreeRec(double[] trees, int offset, int k, Constant constSy, VariableCondition varCondSy) {
233
234      // alglib source for evaluation of one tree (dfprocessinternal)
235      // offs = 0
236      //
237      // Set pointer to the root
238      //
239      // k = offs + 1;
240      //
241      // //
242      // // Navigate through the tree
243      // //
244      // while (true) {
245      //   if ((double)(df.trees[k]) == (double)(-1)) {
246      //     if (df.nclasses == 1) {
247      //       y[0] = y[0] + df.trees[k + 1];
248      //     } else {
249      //       idx = (int)Math.Round(df.trees[k + 1]);
250      //       y[idx] = y[idx] + 1;
251      //     }
252      //     break;
253      //   }
254      //   if ((double)(x[(int)Math.Round(df.trees[k])]) < (double)(df.trees[k + 1])) {
255      //     k = k + innernodewidth;
256      //   } else {
257      //     k = offs + (int)Math.Round(df.trees[k + 2]);
258      //   }
259      // }
260
261      if ((double)(trees[k]) == (double)(-1)) {
262        var constNode = (ConstantTreeNode)constSy.CreateTreeNode();
263        constNode.Value = trees[k + 1];
264        return constNode;
265      } else {
266        var condNode = (VariableConditionTreeNode)varCondSy.CreateTreeNode();
267        condNode.VariableName = AllowedInputVariables[(int)Math.Round(trees[k])];
268        condNode.Threshold = trees[k + 1];
269        condNode.Slope = double.PositiveInfinity;
270
271        var left = CreateRegressionTreeRec(trees, offset, k + 3, constSy, varCondSy);
272        var right = CreateRegressionTreeRec(trees, offset, offset + (int)Math.Round(trees[k + 2]), constSy, varCondSy);
273
274        condNode.AddSubtree(left); // not 100% correct because interpreter uses: if(x <= thres) left() else right() and RF uses if(x < thres) left() else right() (see above)
275        condNode.AddSubtree(right);
276        return condNode;
277      }
278    }
279
280
[14027]281    public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
282      return new RandomForestRegressionSolution(this, new RegressionProblemData(problemData));
[6603]283    }
[14027]284    public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
285      return new RandomForestClassificationSolution(this, new ClassificationProblemData(problemData));
[6603]286    }
287
[11006]288    public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, int nTrees, double r, double m, int seed,
[11901]289      out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
[15474]290      return CreateRegressionModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed,
291       rmsError: out rmsError, outOfBagRmsError: out outOfBagRmsError, avgRelError: out avgRelError, outOfBagAvgRelError: out outOfBagAvgRelError);
[11901]292    }
[11006]293
[11901]294    public static RandomForestModel CreateRegressionModel(IRegressionProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
295      out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
[11006]296      var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
[15142]297      double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
[11006]298
299      alglib.dfreport rep;
300      var dForest = CreateRandomForestModel(seed, inputMatrix, nTrees, r, m, 1, out rep);
301
302      rmsError = rep.rmserror;
[15474]303      outOfBagRmsError = rep.oobrmserror;
[11006]304      avgRelError = rep.avgrelerror;
305      outOfBagAvgRelError = rep.oobavgrelerror;
306
[14027]307      return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m);
[6240]308    }
309
[11006]310    public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, int nTrees, double r, double m, int seed,
311      out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
[15788]312      return CreateClassificationModel(problemData, problemData.TrainingIndices, nTrees, r, m, seed,
[15474]313        out rmsError, out outOfBagRmsError, out relClassificationError, out outOfBagRelClassificationError);
[11901]314    }
[11006]315
[11901]316    public static RandomForestModel CreateClassificationModel(IClassificationProblemData problemData, IEnumerable<int> trainingIndices, int nTrees, double r, double m, int seed,
317      out double rmsError, out double outOfBagRmsError, out double relClassificationError, out double outOfBagRelClassificationError) {
318
[11006]319      var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
[15142]320      double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
[11006]321
322      var classValues = problemData.ClassValues.ToArray();
323      int nClasses = classValues.Length;
324
325      // map original class values to values [0..nClasses-1]
326      var classIndices = new Dictionary<double, double>();
327      for (int i = 0; i < nClasses; i++) {
328        classIndices[classValues[i]] = i;
329      }
330
331      int nRows = inputMatrix.GetLength(0);
332      int nColumns = inputMatrix.GetLength(1);
333      for (int row = 0; row < nRows; row++) {
334        inputMatrix[row, nColumns - 1] = classIndices[inputMatrix[row, nColumns - 1]];
335      }
336
337      alglib.dfreport rep;
338      var dForest = CreateRandomForestModel(seed, inputMatrix, nTrees, r, m, nClasses, out rep);
339
340      rmsError = rep.rmserror;
341      outOfBagRmsError = rep.oobrmserror;
342      relClassificationError = rep.relclserror;
343      outOfBagRelClassificationError = rep.oobrelclserror;
344
[14027]345      return new RandomForestModel(problemData.TargetVariable, dForest, seed, problemData, nTrees, r, m, classValues);
[11006]346    }
347
348    private static alglib.decisionforest CreateRandomForestModel(int seed, double[,] inputMatrix, int nTrees, double r, double m, int nClasses, out alglib.dfreport rep) {
349      AssertParameters(r, m);
350      AssertInputMatrix(inputMatrix);
351
352      int info = 0;
353      alglib.math.rndobject = new System.Random(seed);
354      var dForest = new alglib.decisionforest();
355      rep = new alglib.dfreport();
356      int nRows = inputMatrix.GetLength(0);
357      int nColumns = inputMatrix.GetLength(1);
358      int sampleSize = Math.Max((int)Math.Round(r * nRows), 1);
359      int nFeatures = Math.Max((int)Math.Round(m * (nColumns - 1)), 1);
360
361      alglib.dforest.dfbuildinternal(inputMatrix, nRows, nColumns - 1, nClasses, nTrees, sampleSize, nFeatures, alglib.dforest.dfusestrongsplits + alglib.dforest.dfuseevs, ref info, dForest.innerobj, rep.innerobj);
362      if (info != 1) throw new ArgumentException("Error in calculation of random forest model");
363      return dForest;
364    }
365
366    private static void AssertParameters(double r, double m) {
367      if (r <= 0 || r > 1) throw new ArgumentException("The R parameter for random forest modeling must be between 0 and 1.");
368      if (m <= 0 || m > 1) throw new ArgumentException("The M parameter for random forest modeling must be between 0 and 1.");
369    }
370
371    private static void AssertInputMatrix(double[,] inputMatrix) {
[15788]372      if (inputMatrix.ContainsNanOrInfinity())
[11006]373        throw new NotSupportedException("Random forest modeling does not support NaN or infinity values in the input dataset.");
374    }
375
376    #region persistence for backwards compatibility
377    // when the originalTrainingData is null this means the model was loaded from an old file
378    // therefore, we cannot use the new persistence mechanism because the original data is not available anymore
379    // in such cases we still store the compete model
380    private bool IsCompatibilityLoaded { get { return originalTrainingData == null; } }
381
382    private string[] allowedInputVariables;
383    [Storable(Name = "allowedInputVariables")]
384    private string[] AllowedInputVariables {
385      get {
386        if (IsCompatibilityLoaded) return allowedInputVariables;
387        else return originalTrainingData.AllowedInputVariables.ToArray();
388      }
389      set { allowedInputVariables = value; }
390    }
[6240]391    [Storable]
392    private int RandomForestBufSize {
393      get {
[11006]394        if (IsCompatibilityLoaded) return randomForest.innerobj.bufsize;
395        else return 0;
[6240]396      }
397      set {
398        randomForest.innerobj.bufsize = value;
399      }
400    }
401    [Storable]
402    private int RandomForestNClasses {
403      get {
[11006]404        if (IsCompatibilityLoaded) return randomForest.innerobj.nclasses;
405        else return 0;
[6240]406      }
407      set {
408        randomForest.innerobj.nclasses = value;
409      }
410    }
411    [Storable]
412    private int RandomForestNTrees {
413      get {
[11006]414        if (IsCompatibilityLoaded) return randomForest.innerobj.ntrees;
415        else return 0;
[6240]416      }
417      set {
418        randomForest.innerobj.ntrees = value;
419      }
420    }
421    [Storable]
422    private int RandomForestNVars {
423      get {
[11006]424        if (IsCompatibilityLoaded) return randomForest.innerobj.nvars;
425        else return 0;
[6240]426      }
427      set {
428        randomForest.innerobj.nvars = value;
429      }
430    }
431    [Storable]
432    private double[] RandomForestTrees {
433      get {
[11006]434        if (IsCompatibilityLoaded) return randomForest.innerobj.trees;
435        else return new double[] { };
[6240]436      }
437      set {
438        randomForest.innerobj.trees = value;
439      }
440    }
441    #endregion
442  }
443}
Note: See TracBrowser for help on using the repository browser.